CAREER: Ultrafast Nanoscopy of Energy Transport in Molecular Assemblies

职业:分子组装中能量传输的超快纳米显微镜

基本信息

  • 批准号:
    1555005
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-02-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

The Chemical Structure, Dynamics and Mechanisms Part A (CSDMA) Program in the Chemistry Division of the NSF supports Professor Libai Huang at Purdue University to develop innovative microscopy techniques that provide 'movies' of how light energy absorbed by molecules moves in space and in time. The molecules in this research absorb light strongly and are potentially useful for devices such as solar cells. In order to use them in solar energy conversion devices, the molecules have to be closely packed together and the packing greatly influences how energy is transferred from one molecule to the other. These factors determine the efficiency of the solar cell. By tracking how energy moves in molecular assemblies with different packing, this work is resolving mechanisms that control the speed and distance of energy migration and providing guidelines for designing structures for efficient solar energy harvesting. To achieve these goals, microscopy techniques are being developed to record fast energy transfer events with a resolution of 100 femtoseconds (a femtosecond is one quadrillionth of a second) and to image energy migration distance with a resolution of 20 nanometers (a nanometer is one billionth of a meter). Dr. Huang is developing a new instructional model that integrates active learning with scientific writing aimed at better teaching abstract concepts in physical chemistry. In particular, solar energy applications in this award are being developed into demonstrations to illustrate key concepts in quantum mechanics. Writing assignments of these demonstrations are being utilized to promote high-level cognitive understanding of abstract concepts. The researchers are also developing a scientific outreach program to bring state-of-the-art solar energy research to high schools in Northwest Indiana. The ultrafast nanoscopy methods being developed in this project directly image exciton transport across multiple length and time scales to elucidate coherent and incoherent energy transfer pathways in molecular assemblies. Exciton populations and dynamics following photoexcitation are being mapped with simultaneous 100 fs temporal resolution and ~20 nm spatial precision. These measurements provide first-of-a-kind visualization of the spatial extent of coherent transport. Two model molecular aggregates are employed to systematically probe energy transfer in the intermediate coupling regimes. Linear H aggregates serve as model 1D excitonic quantum wires in which long-range wavelike coherent transport is expected. Tubular aggregates are employed to elucidate exciton transport as a function of dimensionality. Building on results from the model systems, the long-term goal of controlling transport in supramolecular assemblies is achieved by modulating both short- and long-range intermolecular coupling. The research and educational activities are integrated to educate the next generation of solar energy researchers at the K-12, undergraduate, and graduate levels.
NSF化学部的化学结构,动力学和机制A部分(CSDMA)计划支持普渡大学的黄立白教授开发创新的显微镜技术,提供分子吸收的光能如何在空间和时间中移动的“电影”。 这项研究中的分子强烈吸收光,对太阳能电池等设备有潜在用途。 为了在太阳能转换装置中使用它们,分子必须紧密地堆积在一起,并且堆积极大地影响能量如何从一个分子转移到另一个分子。这些因素决定了太阳能电池的效率。 通过跟踪能量如何在具有不同包装的分子组装体中移动,这项工作正在解决控制能量迁移速度和距离的机制,并为设计有效的太阳能收集结构提供指导。 为了实现这些目标,正在开发显微镜技术,以100飞秒(飞秒是一秒的千万亿分之一)的分辨率记录快速能量转移事件,并以20纳米(一纳米是十亿分之一米)的分辨率成像能量迁移距离。 黄博士正在开发一种新的教学模式,将主动学习与科学写作相结合,旨在更好地教授物理化学中的抽象概念。特别是,该奖项中的太阳能应用正在发展成为演示,以说明量子力学中的关键概念。 这些演示的写作作业被用来促进抽象概念的高层次认知理解。 研究人员还在制定一项科学推广计划,将最先进的太阳能研究带到印第安纳州西北部的高中。 在这个项目中开发的超快纳米显微镜方法直接成像激子传输跨越多个长度和时间尺度,以阐明分子组装中的相干和非相干能量转移途径。 激子的人口和动力学光激发被映射与同时100 fs的时间分辨率和~20 nm的空间精度。这些测量提供了第一种可视化的相干传输的空间范围。两个模型分子聚集体被用来系统地探测能量转移的中间耦合制度。线性H聚集体作为模型1D激子量子线,其中预期的长程波相干传输。管状聚集体用于阐明激子传输与维度的函数关系。从模型系统的结果的基础上,在超分子组装控制运输的长期目标是通过调制短和长距离的分子间耦合。 研究和教育活动相结合,以教育下一代太阳能研究人员在K-12,本科和研究生水平。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Libai Huang其他文献

Frozen non-equilibrium dynamics of exciton Mott insulators in moiré superlattices
莫尔超晶格中激子莫特绝缘体的冻结非平衡动力学
  • DOI:
    10.1038/s41563-025-02135-8
  • 发表时间:
    2025-03-03
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Shibin Deng;Heonjoon Park;Jonas Reimann;Jonas M. Peterson;Daria D. Blach;Meng-Jia Sun;Tengfei Yan;Dewei Sun;Takashi Taniguchi;Kenji Watanabe;Xiaodong Xu;Dante M. Kennes;Libai Huang
  • 通讯作者:
    Libai Huang
Tunnelling electrons locally ignite excitons
  • DOI:
    10.1038/s41563-023-01514-3
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Libai Huang
  • 通讯作者:
    Libai Huang
Superradiant and subradiant states in lifetime-limited organic molecules through laser-induced tuning
通过激光诱导调谐研究寿命有限的有机分子的超辐射和亚辐射态
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    C. Lange;E. Daggett;V. Walther;Libai Huang;J. D. Hood
  • 通讯作者:
    J. D. Hood
Early-Career and Emerging Researchers in Physical Chemistry Volume 2.
物理化学领域的早期职业和新兴研究人员第 2 卷。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    A. Alexandrova;J. Biteen;S. Coriani;F. Geiger;A. Gewirth;G. Goward;Hua Guo;Libai Huang;Jianfeng Li;T. Liedl;Stephan Link;Zhi;S. Maiti;A. Orr;David L Osborn;J. Pfaendtner;Benoı T Roux;Friederike Schmid;J. R. Schmidt;William F. Schneider;L. Slipchenko;G. Solomon;J. V. van Bokhoven;V. Van Speybroeck;Shen Ye;T. D. Crawford;M. Zanni;G. Hartland;J. Shea
  • 通讯作者:
    J. Shea
Celebrating Women in Physical Chemistry in China.
庆祝中国物理化学领域的女性。

Libai Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Libai Huang', 18)}}的其他基金

Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324299
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Ultrafast Imaging of Molecular Polariton Transport: Competition between Coherence and Localization
分子极化子传输的超快成像:相干性和定位之间的竞争
  • 批准号:
    2154388
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
MRI: Development of a Machine Learning Multimodal Ultrafast Optical Microscope
MRI:机器学习多模态超快光学显微镜的开发
  • 批准号:
    2117616
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Enhance Exciton Transport in Perovskite Quantum Dot Solids through Coherent Interactions
通过相干相互作用增强钙钛矿量子点固体中的激子传输
  • 批准号:
    2004339
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Femtosecond Microscopy of Charge Transport in Perovskite Thin Films
钙钛矿薄膜中电荷传输的飞秒显微镜
  • 批准号:
    1507803
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Ultrafast-VPCR技术的半夏药材及其成药快速基因检测体系的建立以及应用
  • 批准号:
    81973434
  • 批准年份:
    2019
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

Ultrafast tracking of physiological processes in the human eye
超快速跟踪人眼的生理过程
  • 批准号:
    DP240103352
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Projects
Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing
通过超快激光制造的自由形状石英光纤
  • 批准号:
    MR/X034615/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Fellowship
CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
  • 批准号:
    2338798
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: Photo-induced Ultrafast Electron-nuclear Dynamics in Molecules
职业:分子中光致超快电子核动力学
  • 批准号:
    2340570
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
  • 批准号:
    2326788
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Ultrafast Infrared Spectroscopy Facility
超快红外光谱设备
  • 批准号:
    LE240100004
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
  • 批准号:
    EP/Y032659/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
RII Track-4:NSF: Ultrafast Gripping and Release Mechanisms in Slingshot Spider Legs
RII Track-4:NSF:弹弓蜘蛛腿中的超快抓取和释放机制
  • 批准号:
    2327439
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
THz frequency structures for particle accelerators: Realising ultrafast electron beam manipulation and diagnostics
粒子加速器的太赫兹频率结构:实现超快电子束操纵和诊断
  • 批准号:
    ST/Y510002/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
ultrafast MRIによる乳癌微小環境サブタイプ分類の診断基準の確立
超快MRI乳腺癌微环境亚型分类诊断标准的建立
  • 批准号:
    23K07112
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了