RI: Small: Learning Resilient Autonomous Flight Behaviors by Exploiting Collision-tolerance

RI:小:通过利用碰撞容忍度来学习弹性自主飞行行为

基本信息

项目摘要

This project investigates the potential of a new class of aerial robots that exploit collision-tolerance to mitigate risks and challenges during autonomous flight. Modern autonomous unmanned aerial vehicles strive to avoid any possible collision with the environment, a goal which is often hard to achieve and even harder to guarantee. Looking at the animal kingdom, one can observe an alternative paradigm. Small flying insects for example often come in collision with the environment but this does not hinder them from continuing with their lives and tasks. They survive a collision with little to no problem. Inspired by this fact, this project aims to understand the interplay between collision-tolerance and autonomy for agile navigation. Redefining what constitutes “safe navigation” for a small aerial robot, a new class of resilient micro flyers will maximize agility in autonomous flight, while keeping collision risks and possible impacts of a collision below certain acceptable thresholds. This new type of resilient aerial robots will in turn be valuable in a set of real-world applications such as the inspection of hard to access, narrow and visually-degraded environments. This includes but is not limited to the exploration of underground facilities, accessing cargo tanks through manholes and more. In addition, this project strives to contribute into advanced university education and K12 outreach. The latter crucial goals are achieved by close connections between the envisioned research and university classes, and through synergies with established outreach mechanisms to teachers and K12 students in the State of Nevada. To meet these goals, this project builds on top of four research directions. First, it examines a set of alternative collision-tolerant designs for aerial robots by investigating the different advantages and disadvantages of rigid and compliant designs. Second, it aims to design a new “expert” motion planning strategy that explicitly models the risk of a collision and its effect in autonomous navigation. For the latter, the research team will also model the effect of collisions in the ability of the robot to reliably localize. Third, the project team will examine the potential of reinforcement learning methods in the framework of collision-tolerant autonomous flight. Given the hybrid nature of the dynamic phenomena governing collisions and the effect of collisions in the onboard localization functionality of a flying robot, the project envisions a set of contributions in new approaches for learning to navigate that mitigate localization uncertainty through collision resilience and have minimal computational requirements. Eventually, the project aims to facilitate a new class of resilient flying robotic systems capable of supporting multiple real-life applications such as those of industrial and underground inspection. At the same time it aims to introduce leading-edge research to both undergraduate and graduate education activities, alongside strengthening outreach efforts towards K12 students and their teachers.This project is jointly funded by the Robust Intelligence (RI) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了一类新型空中机器人的潜力,这些机器人利用碰撞容限来减轻自主飞行期间的风险和挑战。现代无人驾驶飞行器努力避免与环境发生任何可能的碰撞,这一目标往往难以实现,甚至更难保证。看看动物王国,人们可以观察到另一种范式。例如,小飞虫经常与环境发生碰撞,但这并不妨碍它们继续它们的生活和任务。它们在碰撞中幸存下来,几乎没有问题。受此启发,该项目旨在了解碰撞容限和敏捷导航自主性之间的相互作用。重新定义了小型空中机器人的“安全导航”,一类新的弹性微型飞行器将最大限度地提高自主飞行的灵活性,同时将碰撞风险和碰撞的可能影响保持在某些可接受的阈值以下。这种新型的弹性空中机器人将在一系列现实世界的应用中发挥重要作用,例如检查难以进入,狭窄和视觉退化的环境。这包括但不限于地下设施的勘探,通过人孔进入货舱等。此外,该项目还致力于为高等大学教育和K12推广做出贡献。后者的关键目标是通过设想的研究和大学课程之间的密切联系,并通过与内华达州的教师和K12学生建立外联机制的协同作用来实现的。为了实现这些目标,该项目建立在四个研究方向之上。首先,它研究了一组替代的碰撞容限设计的空中机器人通过调查刚性和顺应性设计的不同优点和缺点。其次,它旨在设计一种新的“专家”运动规划策略,明确建模碰撞的风险及其对自主导航的影响。对于后者,研究小组还将对碰撞对机器人可靠定位能力的影响进行建模。第三,项目团队将研究强化学习方法在碰撞容忍自主飞行框架中的潜力。考虑到混合动力的性质的动态现象管理碰撞和碰撞的影响,在机载定位功能的飞行机器人,该项目设想了一套新的方法来学习导航,通过碰撞弹性减轻定位的不确定性,并具有最小的计算要求的贡献。最终,该项目旨在促进一类新的弹性飞行机器人系统,能够支持多种实际应用,例如工业和地下检查。与此同时,它的目的是引进前沿研究,本科和研究生教育活动,同时加强对K12学生及其教师的外展工作。该项目由强大的情报(RI)和促进竞争研究的既定计划(EPSCoR)联合资助该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solar Energy Harvesting for a Land-to-Recharge Tiltrotor Micro Aerial Vehicle
用于陆地充电的倾转旋翼微型飞行器的太阳能收集
  • DOI:
    10.1109/aero53065.2022.9843249
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carlson, Stephen J.;Papachristos, Christos
  • 通讯作者:
    Papachristos, Christos
A Multi-VTOL Modular Aspect Ratio Reconfigurable Aerial Robot
Launching a Micro–Scout UAV from a Mobile Robotic Manipulator Arm
从移动机器人机械臂发射微型侦察无人机
The Gannet Solar–VTOL: An Amphibious Migratory UAV for Long–Term Autonomous Missions
Gannet Solar – VTOL:用于长期自主任务的两栖迁徙无人机
Mobile Manipulation-based Deployment of Micro Aerial Robot Scouts through Constricted Aperture-like Ingress Points
通过类似收缩孔径的入口点进行基于移动操纵的微型空中机器人侦察兵部署
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christos Papachristos其他文献

UAV-based Foliage Plant Species Classification for Semantic Characterization of Pre-Fire Landscapes
基于无人机的观叶植物物种分类,用于火灾前景观的语义表征
Hybrid Locomotive Behaviors for an Amphibious Fixed-Wing / VTOL Tiltrotor UAV
两栖固定翼/垂直起降倾转无人机的混合机车行为

Christos Papachristos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
CISE-ANR: RI: Small: Numerically efficient reinforcement learning for constrained systems with super-linear convergence (NERL)
CISE-ANR:RI:小:具有超线性收敛 (NERL) 的约束系统的数值高效强化学习
  • 批准号:
    2315396
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232054
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
RI: Small: Approximate Inference for Planning and Reinforcement Learning
RI:小:规划和强化学习的近似推理
  • 批准号:
    2246261
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2334936
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313130
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
  • 批准号:
    2202699
  • 财政年份:
    2022
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Advancing Theory and Practice of Trustworthy Machine Learning via Bi-Level Optimization
合作研究:RI:小型:通过双层优化推进可信机器学习的理论和实践
  • 批准号:
    2207052
  • 财政年份:
    2022
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了