UC San Diego MRSEC: an NSF Materials Research Science and Engineering Center
加州大学圣地亚哥分校 MRSEC:NSF 材料研究科学与工程中心
基本信息
- 批准号:2011924
- 负责人:
- 金额:$ 1800万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical Abstract: The growth, prosperity, security, and quality of life of humans are in large part determined by the materials they use. The mission of the UC San Diego Materials Research Science and Engineering Center (UCSD MRSEC) is to perform innovative, interdisciplinary materials research relevant to societal needs, and to prepare students to become future leaders in materials design and discovery. The research effort of the Center is conducted within two highly interdisciplinary groups. The first group is deploying the most powerful computers available to understand, predict, and ultimately control the properties of materials at microscopic size scales—sizes just larger than molecular dimensions. It is in this size regime where many useful properties of materials emerge. For example, changes in the shape of metal particles at this scale can change their color, their efficiency as a catalyst, or their sensitivity in a medical diagnostic test. The second group is using the tools of the biotechnology revolution—in particular, genetic engineering and synthetic biology—to build new classes of materials that can respond to stimuli from their environment in useful ways. Both groups are targeting fundamental breakthroughs that can impact a number of critically important needs: faster, more accurate sensors for medical diagnostic tests, more efficient decontamination of chemical or biological hazards, better catalysts to reduce the cost of industrial processes, and improved therapeutics for treating diseases. The fundamental research within the two groups is empowered by an integrated educational program to prepare a diverse community of trainees to enhance national proficiencies in the science, technology, engineering, and mathematics fields. Immersive training for scientists across all levels – novice through established – develops technical competency in laboratory procedures, advanced instrumentation, and computational methods. Internship and scientist-in-residence programs fuel vital exchange of ideas and leverage partnerships with industry, national laboratories, and other collaborators. Partnership with the Fleet Science Center builds researchers’ skills in science communication and connects the UCSD MRSEC with the diverse San Diego community to address community-articulated needs. Technical Abstract: The UCSD MRSEC addresses two fundamental challenges: (1) How to predict and direct the assembly of materials at the mesoscale, where macroscopic behavior and properties emerge (IRG1: Predictive Assembly); and (2) How to deploy the tools of synthetic biology to build soft materials that meld the characteristics of living systems with the performance requirements of advanced engineered materials (IRG2: Stimuli-Responsive Living Polymeric Materials). IRG1 focuses on the rational design of innovative, functional mesomaterials with programmed plasmonic, catalytic, and structural properties. A computation-driven framework is being created to understand, predict, and design how shaped nanocomponents are used as material building blocks. The models developed bridge length and time scales relevant to mesoscale assembly. IRG2 integrates engineered living matter – photosynthetic organisms – into biological composites that respond to stimuli with genetically encoded outputs, such as chemical reagents and polymer feedstocks. The UCSD MRSEC creates unique resources to benefit the broader materials-research community: a MesoMaterials Design Facility – a virtual, computational facility, and an Engineered Living Materials Foundry, consisting of a bio-synthesis laboratory and soft-matter characterization tools. The Center’s educational goals include preparing the next generation of interdisciplinary materials scientists, and increasing diversity and inclusion in materials research. The Research Immersion in Materials Science and Engineering (RIMSE) Summer Schools provide intensive training in the areas of IRG research. Enabling professional development for Center members in science communication, a partnership with the Fleet Science Center facilitates meaningful engagement with the diverse San Diego community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类的成长、繁荣、安全和生活质量在很大程度上取决于他们使用的材料。加州大学圣地亚哥分校材料研究科学与工程中心(UCSD MRSEC)的使命是进行与社会需求相关的创新,跨学科材料研究,并为学生成为材料设计和发现的未来领导者做好准备。该中心的研究工作是在两个高度跨学科的小组进行。第一组是部署最强大的计算机来理解,预测,并最终控制材料在微观尺寸尺度的性质尺寸比分子尺寸大。正是在这种尺寸范围内,材料的许多有用特性出现了。例如,在这个尺度上金属颗粒形状的变化可以改变它们的颜色,它们作为催化剂的效率,或者它们在医学诊断测试中的灵敏度。第二组是利用生物技术革命的工具,特别是基因工程和合成生物学,来制造新型材料,这些材料能够以有用的方式对来自环境的刺激做出反应。这两个小组都瞄准了能够影响许多至关重要的需求的根本性突破:更快,更准确的医疗诊断测试传感器,更有效的化学或生物危害去污,更好的催化剂以降低工业过程的成本,以及改善治疗疾病的疗法。两个团体内的基础研究是由一个综合教育计划授权,以准备一个多元化的受训者社区,以提高国家在科学,技术,工程和数学领域的专业知识。为各级科学家提供沉浸式培训-从新手到成熟-培养实验室程序,先进仪器和计算方法的技术能力。实习和驻校科学家项目促进了重要的思想交流,并利用了与行业、国家实验室和其他合作者的伙伴关系。与舰队科学中心的合作伙伴关系建立了研究人员在科学交流方面的技能,并将UCSD MRSEC与圣地亚哥多元化社区联系起来,以满足社区表达的需求。技术摘要:UCSD MRSEC解决了两个基本挑战:(1)如何预测和指导材料在中尺度的组装,其中出现宏观行为和特性(IRG 1:预测组装);以及(2)如何部署合成生物学的工具来构建软材料,将生命系统的特性与先进工程材料的性能要求相结合(IRG 2:刺激响应活性聚合物材料)。IRG 1专注于合理设计具有编程等离子体,催化和结构特性的创新,功能介电材料。正在创建一个计算驱动的框架,以理解,预测和设计如何将形状纳米组件用作材料构建块。该模型开发的桥梁长度和时间尺度相关的中尺度组装。IRG 2将工程生物物质-光合生物-整合到生物复合材料中,这些生物复合材料对具有遗传编码输出的刺激做出反应,例如化学试剂和聚合物原料。UCSD MRSEC创造了独特的资源,使更广泛的材料研究社区受益:一个MesoMaterials设计设施-一个虚拟的计算设施,以及一个工程生命材料铸造厂,由生物合成实验室和软物质表征工具组成。该中心的教育目标包括培养下一代跨学科材料科学家,并增加材料研究的多样性和包容性。材料科学与工程研究沉浸(RIMSE)暑期学校提供IRG研究领域的强化培训。通过与舰队科学中心的合作,促进了中心成员在科学传播方面的专业发展,促进了与不同圣地亚哥社区的有意义的参与。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(80)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fabrication of an inexpensive injection molding instrument for rapid prototyping of high precision parts
- DOI:10.1016/j.polymer.2022.125521
- 发表时间:2022-11
- 期刊:
- 影响因子:4.6
- 作者:David M. Wirth;Leonard G. McCline;J. Pokorski
- 通讯作者:David M. Wirth;Leonard G. McCline;J. Pokorski
Bioconjugation of Active Ingredients to Plant Viral Nanoparticles Is Enhanced by Preincubation with a Pluronic F127 Polymer Scaffold
- DOI:10.1021/acsami.1c13183
- 发表时间:2021-12-10
- 期刊:
- 影响因子:9.5
- 作者:Shin, Matthew D.;Hochberg, Justin D.;Steinmetz, Nicole F.
- 通讯作者:Steinmetz, Nicole F.
Computational Modeling of Molecular Mechanics for the Experimentally Inclined
- DOI:10.1021/acs.chemmater.2c00292
- 发表时间:2022-08
- 期刊:
- 影响因子:8.6
- 作者:Andrew T. Kleinschmidt;Alexander X. Chen;T. Pascal;D. Lipomi
- 通讯作者:Andrew T. Kleinschmidt;Alexander X. Chen;T. Pascal;D. Lipomi
Effect of variations in manufacturing and material properties on the self-folding behaviors of hydrogel and elastomer bilayer structures
制造和材料性能变化对水凝胶和弹性体双层结构自折叠行为的影响
- DOI:10.1039/d2sm01104b
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Zhao, Jiayu;Kazemi, Hesaneh;Kim, H. Alicia;Bae, Jinhye
- 通讯作者:Bae, Jinhye
Stereoselective Growth of Small Molecule Patches on Nanoparticles.
- DOI:10.1021/jacs.1c04272
- 发表时间:2021-07
- 期刊:
- 影响因子:15
- 作者:Jiajing Zhou;Matthew N Creyer;Amanda A Chen;Wonjun Yim;René P. M. Lafleur;Tengyu He;Zhixing Lin
- 通讯作者:Jiajing Zhou;Matthew N Creyer;Amanda A Chen;Wonjun Yim;René P. M. Lafleur;Tengyu He;Zhixing Lin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Sailor其他文献
Michael Sailor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Sailor', 18)}}的其他基金
Porous Silicon Nanoparticle/Polycaprolactone Composite Nanofibers for Nervous System Repair
用于神经系统修复的多孔硅纳米颗粒/聚己内酯复合纳米纤维
- 批准号:
1603177 - 财政年份:2016
- 资助金额:
$ 1800万 - 项目类别:
Standard Grant
Materials World Network (MWN): Chemistry of Porous Silicon Nanoparticles for Photodynamic Therapy
材料世界网络(MWN):用于光动力疗法的多孔硅纳米粒子的化学
- 批准号:
1210417 - 财政年份:2012
- 资助金额:
$ 1800万 - 项目类别:
Continuing Grant
Materials World Network: "New Functionalized Hybrid Systems for Biosensing and drug Delivery"
材料世界网络:“用于生物传感和药物输送的新型功能化混合系统”
- 批准号:
0806859 - 财政年份:2008
- 资助金额:
$ 1800万 - 项目类别:
Continuing Grant
NSF-Europe Materials Collaboration: New Functionalized Hybrid Systems for Drug Delivery
NSF-欧洲材料合作:用于药物输送的新型功能化混合系统
- 批准号:
0503006 - 财政年份:2005
- 资助金额:
$ 1800万 - 项目类别:
Continuing Grant
Chemistry of Nanostructured Porous Si
纳米结构多孔硅的化学
- 批准号:
0452579 - 财政年份:2005
- 资助金额:
$ 1800万 - 项目类别:
Continuing Grant
Silicate Phosphors from Sol-Gel Prescursors
来自溶胶-凝胶前体的硅酸盐磷光体
- 批准号:
9900034 - 财政年份:1999
- 资助金额:
$ 1800万 - 项目类别:
Continuing Grant
Chemistry of Luminescent Porous Silicon
发光多孔硅的化学
- 批准号:
9700202 - 财政年份:1997
- 资助金额:
$ 1800万 - 项目类别:
Continuing Grant
Chemistry of Luminescent Porous Silicon
发光多孔硅的化学
- 批准号:
9220367 - 财政年份:1993
- 资助金额:
$ 1800万 - 项目类别:
Continuing Grant
相似国自然基金
超临界二氧化碳中制备SAN-FMMT纳米复合材料新方法的研究
- 批准号:20674017
- 批准年份:2006
- 资助金额:29.0 万元
- 项目类别:面上项目
具有适度特殊相互作用的高分子共混体系(TPE/SAN)研究
- 批准号:59373135
- 批准年份:1993
- 资助金额:6.0 万元
- 项目类别:面上项目