Partition of Unity Multivariate Approximation for the Volume of Fluid Method

流体体积法的单位多元近似的划分

基本信息

  • 批准号:
    2012011
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project will advance the understanding of multi-phase flows that are encountered in many scientific and engineering applications. Multi-phase flow problems exhibit highly dynamic, complex interfaces, and the project will develop computational tools to predict the evolution of such interfaces; the challenge is that these interfaces may be largely deformed with intricate localized patterns. Methods for numerically tracking and predicting the dynamics of the interfaces must be able to correctly capture local features with optimal computational costs and high accuracy. This project aims to develop and analyze techniques for fast and highly accurate interface reconstruction methods with emphasis on three-phase (liquid-gas-solid) flow. An application of interest here is deposition of eye drops onto 3D realistic eye geometries. The project also involves research training and integrated education of students in an interdisciplinary setting and the development of codes to support reproducible research.The volume-of-fluid (VOF) method is one of the most commonly used interface tracking methods in multi-phase flow simulations. Research in this project involves the development of techniques to improve the accuracy of the interface reconstruction scheme for the volume of fluid method for simulating multi-phase problems on complex geometries. The three most important aspects we are investigating are (1) robust and highly-accurate partition of unity multivariate approximation volume-of-fluid (PUMA-VOF) method; (2) simultaneous space-time schemes for advection-type partial differential equations (PDEs) on time-varying domains; (3) mathematical modeling and numerical simulation of problems with moving geometries. The research will include theory and practical application of PUMA-VOF on the field of scientific simulations on complex geometries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将增进对许多科学和工程应用中遇到的多相流的理解。多相流问题表现出高度动态、复杂的界面,该项目将开发计算工具来预测此类界面的演变;挑战在于,这些界面可能会因复杂的局部图案而大幅变形。用于数值跟踪和预测界面动态的方法必须能够以最佳的计算成本和高精度正确捕获局部特征。该项目旨在开发和分析快速且高精度的界面重建方法,重点关注三相(液-气-固)流。这里感兴趣的一个应用是将眼药水沉积到 3D 逼真的眼睛几何形状上。该项目还涉及跨学科环境中对学生的研究培训和综合教育,以及支持可重复研究的代码开发。流体体积(VOF)方法是多相流模拟中最常用的界面跟踪方法之一。该项目的研究涉及开发技术来提高流体体积法界面重建方案的准确性,以模拟复杂几何形状的多相问题。我们正在研究的三个最重要的方面是(1)稳健且高精度的单位多元近似流体体积划分(PUMA-VOF)方法; (2)时变域上对流型偏微分方程(PDE)的联立时空格式; (3)运动几何问题的数学建模和数值模拟。该研究将包括 PUMA-VOF 在复杂几何形状的科学模拟领域的理论和实际应用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Collocation methods for integral fractional Laplacian and fractional PDEs based on radial basis functions
  • DOI:
    10.1016/j.amc.2024.128548
  • 发表时间:
    2024-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuang Qiao;A. Heryudono;Fanhai Zeng;Zhongqiang Zhang
  • 通讯作者:
    Zhuang Qiao;A. Heryudono;Fanhai Zeng;Zhongqiang Zhang
A Least Squares Radial Basis Function Finite Difference Method with Improved Stability Properties
具有改进稳定性的最小二乘径向基函数有限差分法
  • DOI:
    10.1137/20m1320079
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Tominec, Igor;Larsson, Elisabeth;Heryudono, Alfa
  • 通讯作者:
    Heryudono, Alfa
Adaptive partition of unity interpolation method with moving patches
带有移动块的单位插值方法的自适应划分
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alfa Heryudono其他文献

Alfa Heryudono的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于流体力学模型和Unity引擎的城市交通流仿真平台
  • 批准号:
    11672348
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Instruments of Unity: The Many Ways of Being One
团结的工具:合一的多种方式
  • 批准号:
    EP/Y014278/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Medieval Vernacular Bibles as Unity, Diversity and Conflict
中世纪白话圣经的统一性、多样性和冲突
  • 批准号:
    AH/Y007573/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Unity Gaming Software Development Course
Unity 游戏软件开发课程
  • 批准号:
    10068672
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative R&D
'An indissoluble unity': considering the relationship between outward influences and the design of Birmingham's radical newspapers 1815-36
“牢不可破的团结”:考虑外部影响与伯明翰激进报纸设计之间的关系 1815-36
  • 批准号:
    2750267
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Unity through diversity and transformation in A la Recherche: A Study of Proust through the lens of Catherine Malabou
《追忆似水年华:通过凯瑟琳·马拉布的镜头对普鲁斯特的研究》中通过多样性和变革实现统一
  • 批准号:
    2733024
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
A reference file theoretic approach to the interpretive diversity and formal unity of existential and copular sentences
存在句和共行句的解释多样性和形式统一的参考文件理论方法
  • 批准号:
    22K00553
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
symbols of Unity: Pride Flags and the Development of LGBTQ+ Identities in London, Berlin, and New York after Stonewall.
团结的象征:石墙事件之后伦敦、柏林和纽约的骄傲旗帜和 LGBTQ 身份的发展。
  • 批准号:
    2763962
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Approaches to modelling agricultural erosion in Unity game engine
在 Unity 游戏引擎中模拟农业侵蚀的方法
  • 批准号:
    562706-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of Visualization framework and AR Application on Unity with point data reduction technique
利用点数据缩减技术在Unity上开发可视化框架和AR应用
  • 批准号:
    21K11916
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and evaluation of an applause and hand-clapping sound feedback system to improve a sense of unity on remote live viewing
提高远程直播观看团结感的掌声、拍手声反馈系统的开发与评估
  • 批准号:
    21K17869
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了