Electrode/Electrolyte Interfaces in High-Voltage Aqueous Alkali-Ion Batteries
高压水系碱离子电池中的电极/电解质界面
基本信息
- 批准号:2016192
- 负责人:
- 金额:$ 43.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Energy storage at an affordable cost has emerged as one of the challenging issues for the energy sector. It is critical for a wide range of applications ranging from electric vehicles to grid storage of renewable energies. Batteries that use an aqueous (water-based) electrolyte have the potential to be more durable and less prone to thermal runaways than current lithium batteries that use an organic solvent. Many of these energy storage applications require high energy density with safe, thermal control of the system. The aqueous electrolyte can solve this problem and also be beneficial for energy storage due to its low cost and high power. However, current aqueous battery technology has an insufficiently low energy density and a narrower voltage output compared to lithium-ion batteries using organic electrolyte. The aim of this research project is to expand the voltage operating window of aqueous batteries. This research will use model thin film systems and combine a suite of advanced in-situ synchrotron X-ray scattering and spectroscopy methods to study the electrode/electrolyte interfaces, which is posited to be the key to enable high voltage in these systems. In addition to advancement in science, the project also promotes the participation of undergraduate students in research through Oregon State University’s Johnson Scholarship and conducts STEM outreach through the OSU Summer Experience in Science & Engineering for Youth Program involving pre-college students in middle school and high school.Aqueous alkali-ion batteries (AAIBs) are promising candidates for large-scale electrochemical energy storage in terms of cost, safety, and power capability. Compared to lithium-ion batteries using organic electrolyte, the main drawback of AAIBs is the limited 1.23 voltage window, beyond which the water splitting reaction happens and consequently hydrogen and/or oxygen gases are produced. Although some successful cases have demonstrated that using water-in-salt electrolyte can obtain high-voltage (more than 3 V) for some aqueous lithium-ion chemistries, such knowledge has not been transformed to other alkali ion chemistries such as sodium or potassium-ion. The goal of this project is to use well-defined thin film systems of aqueous lithium-ion batteries and in-situ synchrotron X-ray techniques to study the formation, structure and composition of solid-electrolyte interphases at the anode and cathode. Such knowledge can be used to design aqueous batteries with high-voltage and long cycling life.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
以可承受的成本存储能源已成为能源行业面临的挑战性问题之一。 它对于从电动汽车到可再生能源电网存储等广泛应用至关重要。与目前使用有机溶剂的锂电池相比,使用水性(水基)电解质的电池可能更耐用且更不易发生热失控。许多此类储能应用都需要高能量密度和安全的系统热控制。水性电解质可以解决这个问题,并且由于其低成本和高功率也有利于能量存储。然而,与使用有机电解质的锂离子电池相比,当前的水系电池技术能量密度不够低,电压输出也较窄。该研究项目的目的是扩大水系电池的电压工作窗口。这项研究将使用模型薄膜系统,并结合一套先进的原位同步加速器 X 射线散射和光谱方法来研究电极/电解质界面,这被认为是在这些系统中实现高电压的关键。除了科学进步之外,该项目还通过俄勒冈州立大学约翰逊奖学金促进本科生参与研究,并通过俄勒冈州立大学青少年科学与工程暑期体验项目开展 STEM 推广,该项目涉及初中和高中的大学预科生。从成本、安全性和功率能力方面来看,水碱离子电池 (AAIB) 是大规模电化学储能的有前途的候选者。与使用有机电解质的锂离子电池相比,AAIB 的主要缺点是有限的 1.23 电压窗口,超过该电压窗口就会发生水分解反应,从而产生氢气和/或氧气。尽管一些成功的案例证明,使用盐包水电解质可以获得某些水性锂离子化学物质的高电压(超过3V),但这种知识尚未转化为其他碱离子化学物质,例如钠或钾离子。该项目的目标是利用明确的水系锂离子电池薄膜系统和原位同步加速器X射线技术来研究阳极和阴极固体电解质界面的形成、结构和组成。这些知识可用于设计具有高电压和长循环寿命的水性电池。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
From Copper to Basic Copper Carbonate: A Reversible Conversion Cathode in Aqueous Anion Batteries
从铜到碱式碳酸铜:水系阴离子电池中的可逆转换阴极
- DOI:10.1002/anie.202203837
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gallagher, Trenton C.;Wu, Che‐Yu;Lucero, Marcos;Sandstrom, Sean K.;Hagglund, Lindsey;Jiang, Heng;Stickle, William;Feng, Zhenxing;Ji, Xiulei
- 通讯作者:Ji, Xiulei
Dual-shell silicate and alumina coating for long lasting and high capacity lithium ion batteries
用于持久耐用和高容量锂离子电池的双壳硅酸盐和氧化铝涂层
- DOI:10.1016/j.jechem.2021.11.014
- 发表时间:2022
- 期刊:
- 影响因子:13.1
- 作者:Lucero, Marcos;Holstun, Tucker M.;Yao, Yudong;Faase, Ryan;Wang, Maoyu;N'Diaye, Alpha T.;Cann, David P.;Baio, Joe;Deng, Junjing;Feng, Zhenxing
- 通讯作者:Feng, Zhenxing
Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc–air batteries
表面氧化引起锌空气电池的钯催化剂和功能载体之间的强相互作用
- DOI:10.1039/d1ee03972e
- 发表时间:2022
- 期刊:
- 影响因子:32.5
- 作者:Zhang, Wei;Chang, Jinfa;Wang, Guanzhi;Li, Zhao;Wang, Maoyu;Zhu, Yuanmin;Li, Boyang;Zhou, Hua;Wang, Guofeng;Gu, Meng
- 通讯作者:Gu, Meng
The Role of Nonmetallic Ion Substitution in Perovskite LaCoO3 for Improved Oxygen Evolution Reaction Activity
- DOI:10.1016/j.electacta.2023.143034
- 发表时间:2023-08
- 期刊:
- 影响因子:6.6
- 作者:Maoyu Wang;Kingsley C. Chukwu;Brian A. Muhich;W. Samarakoon;Zizhou He;M. Lucero;Chun-Wai Chang
- 通讯作者:Maoyu Wang;Kingsley C. Chukwu;Brian A. Muhich;W. Samarakoon;Zizhou He;M. Lucero;Chun-Wai Chang
Research Progress on Iron-Based Materials for Aqueous Sodium-Ion Batteries
- DOI:10.3390/batteries9070349
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Songyang Chang;S. Qiu;S. Katiyar;José Fernando Flórez Gómez;Zhenxing Feng;Xianyong Wu
- 通讯作者:Songyang Chang;S. Qiu;S. Katiyar;José Fernando Flórez Gómez;Zhenxing Feng;Xianyong Wu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenxing Feng其他文献
Thermally induced nanoscale structural and morphological changes for atomic-layer-deposited Pt on SrTiO3(001)
SrTiO3(001) 上原子层沉积 Pt 的热致纳米结构和形貌变化
- DOI:
10.1063/1.3661163 - 发表时间:
2011 - 期刊:
- 影响因子:3.2
- 作者:
Zhenxing Feng;S. Christensen;J. Elam;Byeongdu Lee;M. Hersam;M. Bedzyk - 通讯作者:
M. Bedzyk
Molecular-scale CO spillover on a dual-site electrocatalyst enhances methanol production from CO2 reduction
双位点电催化剂上的分子级 CO 溢流增强了二氧化碳还原制甲醇的产率
- DOI:
10.1038/s41565-025-01866-8 - 发表时间:
2025-02-18 - 期刊:
- 影响因子:34.900
- 作者:
Jing Li;Quansong Zhu;Alvin Chang;Seonjeong Cheon;Yuanzuo Gao;Bo Shang;Huan Li;Conor L. Rooney;Longtao Ren;Zhan Jiang;Yongye Liang;Zhenxing Feng;Shize Yang;L. Robert Baker;Hailiang Wang - 通讯作者:
Hailiang Wang
Depth dependent elastic strain in ZnO epilayer: combined Rutherford backscattering/channeling and X-ray diffraction
ZnO 外延层中的深度相关弹性应变:结合卢瑟福背向散射/沟道和 X 射线衍射
- DOI:
10.1016/j.nimb.2004.11.020 - 发表时间:
2005 - 期刊:
- 影响因子:1.3
- 作者:
Zhenxing Feng;S. Yao;L. Hou;R. Jin - 通讯作者:
R. Jin
Partial-Single-Atom, Partial-Nanoparticle Composites Enhance Water Dissociation for Hydrogen Evolution
- DOI:
https://doi.org/10.1002/advs.202001881 - 发表时间:
2021 - 期刊:
- 影响因子:15.1
- 作者:
Hu Chun;Song Erhong;Wang Maoyu;Chen Wei;Huang Fuqian;Zhenxing Feng;Liu Jianjun;Wang Jiacheng - 通讯作者:
Wang Jiacheng
Development of a γ-polyglutamic acid binder for cathodes with high mass fraction of sulfur
高硫质量分数阴极用γ-聚谷氨酸粘合剂的开发
- DOI:
10.1039/c6ra20504f - 发表时间:
2016-10 - 期刊:
- 影响因子:3.9
- 作者:
Tingting Qiu;Hongyuan Shao;Weikun Wang;Hao Zhang;Anbang Wang;Zhenxing Feng;Yaqin Huang - 通讯作者:
Yaqin Huang
Zhenxing Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenxing Feng', 18)}}的其他基金
NSF Convergence Accelerator Track I: Toward Water Circularity: Mining Green Hydrogen and Value-Added Materials from Hypersaline Brines
NSF 融合加速器轨道 I:迈向水循环:从超咸水中开采绿色氢和增值材料
- 批准号:
2236036 - 财政年份:2022
- 资助金额:
$ 43.43万 - 项目类别:
Standard Grant
Collaborative Research: A New Rational Design of Functionally Graded Materials for Durable Lithium-Ion Batteries
合作研究:耐用锂离子电池功能梯度材料的新合理设计
- 批准号:
1949870 - 财政年份:2020
- 资助金额:
$ 43.43万 - 项目类别:
Standard Grant
Energy Storage 2017: Opportunities and Challenges for Electric Grid, Wave, Hydropower and Other Sustainable Energies
2017年储能:电网、波浪能、水力发电和其他可持续能源的机遇和挑战
- 批准号:
1806199 - 财政年份:2017
- 资助金额:
$ 43.43万 - 项目类别:
Standard Grant
相似海外基金
Understanding Electrode-Electrolyte Interfaces for Next-Generation Batteries
了解下一代电池的电极-电解质界面
- 批准号:
2603728 - 财政年份:2021
- 资助金额:
$ 43.43万 - 项目类别:
Studentship
Spectroscopic study on dynamical structures of electrode/electrolyte interfaces using surface-enhanced electronic and vibrational Raman scattering
使用表面增强电子和振动拉曼散射对电极/电解质界面动态结构进行光谱研究
- 批准号:
21H01882 - 财政年份:2021
- 资助金额:
$ 43.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of reactive force-field and molecular dynamics simulation of electrode-electrolyte interfaces
电极-电解质界面反作用力场和分子动力学模拟的发展
- 批准号:
21K04650 - 财政年份:2021
- 资助金额:
$ 43.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing Electrode-Electrolyte Interfaces in Rechargeable Alkali-Ion Batteries
探测可充电碱离子电池中的电极-电解质界面
- 批准号:
2436981 - 财政年份:2020
- 资助金额:
$ 43.43万 - 项目类别:
Studentship
Fundamental understanding of electrode-electrolyte interfaces in novel batteries
对新型电池中电极-电解质界面的基本了解
- 批准号:
2451066 - 财政年份:2020
- 资助金额:
$ 43.43万 - 项目类别:
Studentship
Improved atomistic first-principles description of structures and processes at electrochemical electrode/electrolyte interfaces
改进了电化学电极/电解质界面结构和过程的原子第一原理描述
- 批准号:
428022078 - 财政年份:2019
- 资助金额:
$ 43.43万 - 项目类别:
Research Grants
Dynamics at Electrode-Electrolyte Interfaces Down to the Nanosecond Domain
电极-电解质界面的动力学低至纳秒域
- 批准号:
1808592 - 财政年份:2018
- 资助金额:
$ 43.43万 - 项目类别:
Continuing Grant
NSF/DMR-BSF: Ceramic Electrode/Electrolyte Interfaces Fundamentals in all Solid State Li-ion Batteries
NSF/DMR-BSF:所有固态锂离子电池中的陶瓷电极/电解质界面基础知识
- 批准号:
1734763 - 财政年份:2017
- 资助金额:
$ 43.43万 - 项目类别:
Standard Grant
CAREER: Engineering electrode-electrolyte interfaces through electrolyte selection for improved performance in lithium-air batteries and fuel cell electrocatalysis
职业:通过选择电解质来设计电极-电解质界面,以提高锂空气电池和燃料电池电催化的性能
- 批准号:
1554273 - 财政年份:2016
- 资助金额:
$ 43.43万 - 项目类别:
Standard Grant
Voltage-driven redistribution of lithium ions at solid electrolyte and electrode interfaces
固体电解质和电极界面处锂离子的电压驱动重新分布
- 批准号:
16K14088 - 财政年份:2016
- 资助金额:
$ 43.43万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research