RAPID: AI- and Data-driven Integrated Framework for Hierarchical Community-level Risk Assessment
RAPID:人工智能和数据驱动的分层社区级风险评估集成框架
基本信息
- 批准号:2027127
- 负责人:
- 金额:$ 8.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The fast evolving and deadly outbreak of coronavirus disease (COVID-19) has created one of the most challenging issues facing global public health. According to the Centers for Disease Control and Prevention (CDC), before a vaccine or drug becomes widely available, community mitigation, which is a set of actions that persons and communities can take to help slow the spread of respiratory virus infections, is the most readily available interventions to help slow transmission of the virus in communities. A growing number of areas are reporting community transmission of the virus, which would represent a significant turn for the worse in the battle against the novel coronavirus; this points to an urgent need for expanded surveillance so we can better understand the spread of COVID-19 and better respond with actionable strategies for community mitigation. By advancing capabilities of artificial intelligence (AI) and leveraging the large-scale and real-time data generated from heterogeneous sources, the goal of this project is to design and develop an AI- and data-driven integrated framework to provide real-time hierarchical community-level risk assessment to help combat the COVID-19 pandemic.The research will have three main parts. First, the research team will construct a novel heterogeneous graph architecture to comprehensively model the large-scale and real-time pandemic related data collected from multiple sources. Second, the team will develop conditional generative adversarial nets for graph enrichment to address the challenge of limited data that might be available for learning. Third, the team will develop algorithms to model potential community transmission routes and design an innovative heterogeneous graph auto-encoder model for hierarchical community-level risk assessment. Through the potential community transmission route modeling, the developed framework will facilitate a predictive understanding of the spread of the virus; by providing the dynamic and real-time COVID-19 risk assessment, the planned work will enable the general public to select appropriate actions for protection while minimizing disruptions to daily life to the extent possible (i.e., mitigate the negative effects of COVID-19 on public health, society, and the economy). The planned research will benefit intelligent information management where multiple data sources are involved and secure and trustworthy cyberspace with applications such as malware detection and mitigation. The project integrates research with education through curriculum development, the participation of underrepresented groups, and student mentoring activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
冠状病毒病(COVID-19)的快速演变和致命爆发已成为全球公共卫生面临的最具挑战性的问题之一。根据疾病控制和预防中心(CDC)的说法,在疫苗或药物广泛使用之前,社区缓解是个人和社区可以采取的一系列行动,以帮助减缓呼吸道病毒感染的传播,是帮助减缓病毒在社区传播的最现成的干预措施。越来越多的地区报告了该病毒的社区传播,这将意味着对抗新型冠状病毒的斗争出现重大恶化;这表明迫切需要扩大监测,以便我们能够更好地了解COVID-19的传播,并更好地采取可行的社区缓解策略。该项目的目标是通过提升人工智能(AI)的能力,并利用从不同来源产生的大规模和实时数据,设计和开发一个AI和数据驱动的集成框架,以提供实时分层社区层面的风险评估,以帮助抗击COVID-19大流行。该研究将分为三个主要部分。首先,研究团队将构建一个新颖的异构图架构,以全面建模从多个来源收集的大规模和实时流行病相关数据。其次,该团队将开发用于图形丰富的条件生成对抗网络,以解决可能用于学习的有限数据的挑战。第三,该团队将开发算法来模拟潜在的社区传播路线,并设计一个创新的异构图形自动编码器模型,用于分层社区级风险评估。通过潜在的社区传播途径建模,已开发的框架将有助于对病毒传播的预测性了解;通过提供动态和实时的COVID-19风险评估,计划中的工作将使公众能够选择适当的保护行动,同时尽可能减少对日常生活的干扰(即,减轻COVID-19对公共卫生、社会和经济的负面影响)。计划中的研究将有利于涉及多个数据源的智能信息管理,以及通过恶意软件检测和缓解等应用程序保护和可靠的网络空间。该项目通过课程开发、代表性不足群体的参与和学生辅导活动将研究与教育结合起来。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint Demosaicing and Super-Resolution (JDSR): Network Design and Perceptual Optimization
- DOI:10.1109/tci.2020.2999819
- 发表时间:2019-11
- 期刊:
- 影响因子:5.4
- 作者:Xuan Xu;Yanfang Ye;Xin Li
- 通讯作者:Xuan Xu;Yanfang Ye;Xin Li
Detection of Illicit Drug Trafficking Events on Instagram: A Deep Multimodal Multilabel Learning Approach
- DOI:10.1145/3459637.3481908
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Chuanbo Hu;Minglei Yin;Bing Liu;Xin Li;Yanfang Ye
- 通讯作者:Chuanbo Hu;Minglei Yin;Bing Liu;Xin Li;Yanfang Ye
RxNet: Rx-refill Graph Neural Network for Overprescribing Detection
- DOI:10.1145/3459637.3482465
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Jianfei Zhang;Ai-Te Kuo;Jianan Zhao;Qianlong Wen;E. Winstanley;Chuxu Zhang;Yanfang Ye
- 通讯作者:Jianfei Zhang;Ai-Te Kuo;Jianan Zhao;Qianlong Wen;E. Winstanley;Chuxu Zhang;Yanfang Ye
Heterogeneous Graph Structure Learning for Graph Neural Networks
- DOI:10.1609/aaai.v35i5.16600
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Jianan Zhao;Xiao Wang;C. Shi;Binbin Hu;Guojie Song;Yanfang Ye
- 通讯作者:Jianan Zhao;Xiao Wang;C. Shi;Binbin Hu;Guojie Song;Yanfang Ye
WebEvo: taming web application evolution via detecting semantic structure changes
- DOI:10.1145/3460319.3464800
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Fei Shao;Ruiwen Xu;W. Haque;Jingwei Xu;Ying Zhang;Wei Yang;Yanfang Ye;Xusheng Xiao
- 通讯作者:Fei Shao;Ruiwen Xu;W. Haque;Jingwei Xu;Ying Zhang;Wei Yang;Yanfang Ye;Xusheng Xiao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanfang Ye其他文献
Classifying construction site photos for roof detection
对施工现场照片进行分类以进行屋顶检测
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Madhuri Siddula;F. Dai;Yanfang Ye;Jianping Fan - 通讯作者:
Jianping Fan
Efficacy and safety of cadonilimab (PD-1/CTLA-4 bispecific) in combination with chemotherapy in anti-PD-1-resistant recurrent or metastatic nasopharyngeal carcinoma: a single-arm, open-label, phase 2 trial
- DOI:
10.1186/s12916-025-03985-4 - 发表时间:
2025-03-11 - 期刊:
- 影响因子:8.300
- 作者:
Yaofei Jiang;Weixin Bei;Lin Wang;Nian Lu;Cheng Xu;Hu Liang;Liangru Ke;Yanfang Ye;Shuiqing He;Shuhui Dong;Qin Liu;Chuanrun Zhang;Xuguang Wang;Weixiong Xia;Chong Zhao;Ying Huang;Yanqun Xiang;Guoying Liu - 通讯作者:
Guoying Liu
THERMO-SENSITIVE SPIKELET DEFECTS 1 acclimatizes rice spikelet initiation and development to high temperature
热敏小穗缺陷 1 使水稻小穗的萌生和发育适应高温
- DOI:
10.1093/plphys/kiac576 - 发表时间:
2023 - 期刊:
- 影响因子:7.4
- 作者:
Zhengzheng Cai;Gang Wang;Jieqiong Li;Lan Kong;Weiqi Tang;Xuequn Chen;Xiaojie Qu;Chenchen Lin;Yulin Peng;Yang Liu;Zhanlin Deng;Yanfang Ye;Weiren Wu;Yuanlin Duan - 通讯作者:
Yuanlin Duan
ISMCS: An intelligent instruction sequence based malware categorization system
ISMCS:基于智能指令序列的恶意软件分类系统
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Kaiming Huang;Yanfang Ye;Qinshan Jiang - 通讯作者:
Qinshan Jiang
Soter: Smart Bracelets for Children's Safety
Soter:保护儿童安全的智能手环
- DOI:
10.1145/2700483 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yanfang Ye;Tao Li;Haiyin Shen - 通讯作者:
Haiyin Shen
Yanfang Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanfang Ye', 18)}}的其他基金
EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
- 批准号:
2334193 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
- 批准号:
2321504 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
D-ISN: An AI-augmented Framework to Detect, Disrupt, and Dismantle Opioid Trafficking Networks
D-ISN:用于检测、破坏和拆除阿片类药物贩运网络的人工智能增强框架
- 批准号:
2146076 - 财政年份:2022
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
CAREER: Securing Cyberspace: Gaining Deep Insights into the Online Underground Ecosystem
职业:保护网络空间:深入了解在线地下生态系统
- 批准号:
2203261 - 财政年份:2021
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
EAGER: An AI-driven Paradigm for Collective and Collaborative Community Resilience in the COVID-19 Era and Beyond
EAGER:COVID-19 时代及以后的集体和协作社区复原力的人工智能驱动范式
- 批准号:
2209814 - 财政年份:2021
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
III: Small: Mining Heterogeneous Network Built from Multiple Data Sources to Reduce Opioid Overdose Risks
III:小型:挖掘由多个数据源构建的异构网络以减少阿片类药物过量风险
- 批准号:
2214376 - 财政年份:2021
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
- 批准号:
2217239 - 财政年份:2021
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
CICI: SSC: SciTrust: Enhancing Security for Modern Software Programming Cyberinfrastructure
CICI:SSC:SciTrust:增强现代软件编程网络基础设施的安全性
- 批准号:
2218762 - 财政年份:2021
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
- 批准号:
2203262 - 财政年份:2021
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
- 批准号:
2107172 - 财政年份:2021
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
相似国自然基金
AI 辅助药物设计姜黄素化合物的靶向结构修饰及其防治肝衰竭的成药性研究
- 批准号:JCZRLH202500512
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
应用于AI芯片的先进封装TSV关键技术研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动的工业微生物合成元件挖掘与产品智造
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“治未病”理论构建AI赋能下的肥胖伴焦虑状态针灸数智化防治体系
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AI 技术的高校网络舆情监测与治理路径研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于可穿戴设备与AI动态优化的阿尔茨海默病早期生活方式干预系统研发及效应研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动药物研发的技术发展趋势及重庆技术创新路径选择战略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
患者安全视角下医疗AI技术对医务人员风险感知的双刃剑机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
An innovative platform using ML/AI to analyse farm data and deliver insights to improve farm performance, increasing farm profitability by 5-10%
An%20innovative%20platform%20using%20ML/AI%20to%20analysis%20farm%20data%20and%20deliver%20insights%20to%20improv%20farm%20performance,%20increasing%20farm%20profitability%20by%205-10%
- 批准号:
10093235 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Collaborative R&D
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
EcoTraceAI: A Novel AI-based Platform for data collection and validation for measuring the environmental impacts of the supply chain in the fashion industry.
EcoTraceAI:一个基于人工智能的新型平台,用于数据收集和验证,用于衡量时尚行业供应链的环境影响。
- 批准号:
10114149 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
SME Support
GOAL project: AI-supported self-directed learning lifestyle in data-rich educational ecosystem
GOAL 项目:数据丰富的教育生态系统中人工智能支持的自主学习生活方式
- 批准号:
23K25156 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
メタボに固執した特定健診からの脱却:real world dataを用いたAIによる評価法の創出
摆脱专注于代谢综合征的特定健康检查:使用真实世界数据创建基于人工智能的评估方法
- 批准号:
24K13502 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
"Ethical Review to Support Responsible AI in Policing - A Preliminary Study of West Midlands Police's Specialist Data Ethics Review Committee "
“支持警务中负责任的人工智能的道德审查——西米德兰兹郡警察专家数据道德审查委员会的初步研究”
- 批准号:
AH/Z505626/1 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Research Grant
CAREER: A Platform for Per-Packet AI using Heterogeneous Data Planes
职业:使用异构数据平面的每数据包人工智能平台
- 批准号:
2338034 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
National Edge AI Hub for Real Data: Edge Intelligence for Cyber-disturbances and Data Quality
用于真实数据的国家边缘人工智能中心:针对网络干扰和数据质量的边缘智能
- 批准号:
EP/Y028813/1 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Research Grant
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
- 批准号:
10100493 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Collaborative R&D
RAIDO: Reliable AI and Data Optimization
RAIDO:可靠的人工智能和数据优化
- 批准号:
10099264 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
EU-Funded