A1: The Urban Flooding Open Knowledge Network (UF-OKN): Delivering Flood Information to AnyOne, AnyTime, AnyWhere
A1:城市洪水开放知识网络(UF-OKN):向任何人、任何时间、任何地点传递洪水信息
基本信息
- 批准号:2033607
- 负责人:
- 金额:$ 500万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The NSF Convergence Accelerator supports use-inspired, team-based, multidisciplinary efforts that address challenges of national importance and will produce deliverables of value to society in the near future.The broader impact and potential societal benefit of this Convergence Accelerator Phase II project is to minimize economic and human losses from future urban flooding in the United States. Floods impact a series of interconnected urban systems – the Urban Multiplex, that include the power grid and transportation network, surface water and groundwater, sewerage and drinking water systems, inland navigation and dams, all of which are intertwined with the socioeconomic and public health sectors. This project uses a convergent approach to integrate these multiple interconnected systems and merges state-of-the-art practices in hydrological and hydraulic engineering; systems analysis, optimization and control; machine learning, data and computer science; epidemiology; socioeconomics; and transportation and electrical engineering to develop an Urban Flood Open Knowledge Network (OKN), the final deliverable of the project. It will be built with unprecedented engagement between urban domain and flooding experts, practitioners, scientists, and technology specialists. This partnership includes universities, nonprofits, private companies, national labs, federal agencies, states, counties and municipalities across the country. The Urban Flood-OKN will empower decision makers and the general public by providing information on how much flooding may occur from a future event and will also show its cascading impact on natural and engineered infrastructures of an urban area. The convergence research and development team supporting this effort has integrated researchers and methods from across disciplines including civil and environmental engineering, hydrology, geography, computer science, meteorology, public safety, emergency response, and economics. The partners engaged as advisors, potential users, and developers include more than a dozen municipalities and water management districts, federal agencies (NOAA, USDOT, NIST, USGS, EPA, FEMA), a national lab (PNNL), non-profits (Consortium of Ocean Leadership, Woods Hole Oceanographic Institution, Consortium of Universities for the Advancement of Hydrologic Science), for-profit organizations, consortia, and individuals. The real impact of flooding on the Urban Multiplex is currently very difficult to quantify because many of its systems are independently designed and managed. Hence an open knowledge network that captures the interconnectedness of these systems and how they impact each other is critically needed. This project will semantically link the Urban Multiplex, whose subsystems generate data that are currently not interoperable. This will enable meaningful queries on flood-related information relevant to urban sustainability. The Urban Flood-OKN will help increase urban resilience and minimize damage from future urban floods due to changing climate and changing land use patterns. It will allow identification of early-warning signals of critical transitions/shifts of a complex interdependent infrastructure system responding to external pressures, and how shifts will be affected by the structure of the Urban Multiplex and failures propagating across its subsystems. This project also has the potential to bring about a societal transformation in the way practitioners, researchers, and the general public engage with, consume, and act upon information about the potential response of the Urban Multiplex to extreme external pressures. This project will allow internet queries that produce actionable information on what to do during storms and flooding, how to plan long-term, and how these decisions will contribute to urban sustainability and resilience – all based on solid science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以使用为灵感,以团队为基础,多学科的努力,解决国家重要性的挑战,并将在不久的将来产生对社会有价值的可交付成果。“融合加速器”二期项目的更广泛影响和潜在社会效益是将美国未来城市洪水造成的经济和人员损失降至最低。洪水影响了一系列相互关联的城市系统——城市综合体,包括电网和交通网络、地表水和地下水、污水处理和饮用水系统、内河航运和水坝,所有这些都与社会经济和公共卫生部门交织在一起。该项目采用一种融合的方法来整合这些多个相互关联的系统,并融合了水文和水利工程领域的最新实践;系统分析、优化和控制;机器学习、数据和计算机科学;流行病学;经济学基础;以及交通和电气工程,以开发城市洪水开放知识网络(OKN),这是该项目的最终成果。它将在城市领域和洪水专家、从业者、科学家和技术专家之间进行前所未有的合作。这种伙伴关系包括大学、非营利组织、私营公司、国家实验室、联邦机构、州、县和全国各地的市政当局。城市洪水okn将通过提供有关未来事件可能发生多少洪水的信息,并将显示其对城市地区自然和工程基础设施的级联影响,从而增强决策者和公众的能力。支持这项工作的融合研究和开发团队整合了来自各个学科的研究人员和方法,包括土木与环境工程、水文学、地理学、计算机科学、气象学、公共安全、应急响应和经济学。作为顾问、潜在用户和开发者的合作伙伴包括十多个市政当局和水资源管理区、联邦机构(NOAA、USDOT、NIST、USGS、EPA、FEMA)、国家实验室(PNNL)、非营利组织(海洋领导联盟、伍兹霍尔海洋研究所、促进水文科学大学联盟)、营利性组织、联盟和个人。洪水对城市综合影院的实际影响目前很难量化,因为它的许多系统都是独立设计和管理的。因此,迫切需要一个开放的知识网络,捕捉这些系统的相互联系以及它们如何相互影响。该项目将在语义上连接城市多路复用,其子系统产生的数据目前无法互操作。这将使人们能够对与城市可持续性有关的与洪水有关的信息进行有意义的查询。城市洪水okn将有助于提高城市的复原力,并最大限度地减少气候变化和土地利用模式变化对未来城市洪水造成的损害。它将允许识别对外部压力作出反应的复杂相互依赖的基础设施系统的关键过渡/转移的早期预警信号,以及转移将如何受到城市多路复用结构和跨子系统传播的故障的影响。这个项目也有可能带来一场社会变革,改变实践者、研究人员和公众参与、消费和行动的方式,改变城市综合体对极端外部压力的潜在反应。该项目将允许互联网查询产生可操作的信息,包括在风暴和洪水期间该做什么,如何进行长期规划,以及这些决策将如何促进城市的可持续性和复原力——所有这些都基于可靠的科学。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Developing an integrated technology-environment-economics model to simulate food-energy-water systems in Corn Belt watersheds
- DOI:10.1016/j.envsoft.2021.105083
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Shaobin Li;Ximing Cai;Seyed Aryan Emaminejad;Ankita Juneja;S. Niroula;Seojeong Oh;Kevin Wallington;R. Cusick;B. Gramig;Stephen John;G. McIsaac;Vijay Singh
- 通讯作者:Shaobin Li;Ximing Cai;Seyed Aryan Emaminejad;Ankita Juneja;S. Niroula;Seojeong Oh;Kevin Wallington;R. Cusick;B. Gramig;Stephen John;G. McIsaac;Vijay Singh
Automatically Extracting OWL Versions of FOL Ontologies
自动提取 FOL 本体的 OWL 版本
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Hahmann, Torsten;Powell, Robert
- 通讯作者:Powell, Robert
Interpolating Hydrologic Data Using Laplace Formulation
- DOI:10.3390/rs15153844
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Tian Xu;V. Merwade;Zhiquan Wang
- 通讯作者:Tian Xu;V. Merwade;Zhiquan Wang
ELECTRIC LOAD AND POWER FORECASTING USING ENSEMBLE GAUSSIAN PROCESS REGRESSION
使用集合高斯过程回归进行电力负荷和功率预测
- DOI:10.1615/jmachlearnmodelcomput.2022041871
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ma, T.;Barajas-Solano, David A.;Huang, R.;Tartakovsky, Alexandre M.
- 通讯作者:Tartakovsky, Alexandre M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lilit Yeghiazarian其他文献
An efficient data-driven method for isolating dry-weather flow from total combined sewer flow data
一种从合流污水总流量数据中分离出旱季流量的高效数据驱动方法
- DOI:
10.1016/j.envsoft.2025.106470 - 发表时间:
2025-05-30 - 期刊:
- 影响因子:4.600
- 作者:
Katie Straus;John Barton;M. Sadegh Riasi;Lilit Yeghiazarian - 通讯作者:
Lilit Yeghiazarian
Role of temperature in quanta mechanisms of facilitation in the frog neuromuscular junction
- DOI:
10.1007/s004220050458 - 发表时间:
1998-08-01 - 期刊:
- 影响因子:1.600
- 作者:
Lilit Yeghiazarian;Mark Kaiser - 通讯作者:
Mark Kaiser
Lilit Yeghiazarian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lilit Yeghiazarian', 18)}}的其他基金
Proto-OKN Theme 1: The Water-Energy Nexus Open Knowledge Network (WEN-OKN)
Proto-OKN 主题 1:水-能源关系开放知识网络 (WEN-OKN)
- 批准号:
2333726 - 财政年份:2023
- 资助金额:
$ 500万 - 项目类别:
Cooperative Agreement
Convergence Accelerator Phase I (RAISE): The Urban Flooding Open Knowledge Network
融合加速器第一阶段(RAISE):城市洪水开放知识网络
- 批准号:
1937099 - 财政年份:2019
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
A systems approach to managing the Urban Infrastructure Grid
管理城市基础设施网格的系统方法
- 批准号:
1929869 - 财政年份:2019
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
CAREER:Integrated Research & Education In Stochastic Systems-Based Watershed Management & Water Safety (SWMS)
职业:综合研究
- 批准号:
1351361 - 财政年份:2014
- 资助金额:
$ 500万 - 项目类别:
Continuing Grant
EAGER: MONITORING NATION'S WATERS - TOWARDS A SWIMMING BIOSENSOR TO DYNAMICALLY MAP MICROBIAL CONTAMINATION
渴望:监测国家水域 - 开发游泳生物传感器来动态绘制微生物污染图
- 批准号:
1248385 - 财政年份:2012
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
相似海外基金
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
- 批准号:
2210811 - 财政年份:2022
- 资助金额:
$ 500万 - 项目类别:
Continuing Grant
Evaluating coastal vegetation in urban adaptation to sea level rise and flooding.
评估城市适应海平面上升和洪水的沿海植被。
- 批准号:
559860-2021 - 财政年份:2022
- 资助金额:
$ 500万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Urban flooding mapping: optimising sustainable infrastructure in the face of climate change
城市洪水测绘:面对气候变化优化可持续基础设施
- 批准号:
569895-2022 - 财政年份:2022
- 资助金额:
$ 500万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
- 批准号:
2210840 - 财政年份:2022
- 资助金额:
$ 500万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Anticipation, Catastrophic Flooding, and Canal Infrastructure in Urban Coastal Settings
博士论文研究:城市沿海环境中的预测、灾难性洪水和运河基础设施
- 批准号:
2148871 - 财政年份:2022
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
Urban Flood Risk and Basement Flooding Mitigation Approaches
城市洪水风险和地下室洪水缓解方法
- 批准号:
564532-2021 - 财政年份:2021
- 资助金额:
$ 500万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Urban Flooding and Residential Adaptation
合作研究:城市洪水与住宅适应
- 批准号:
2116479 - 财政年份:2021
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
Dynamics and Perceptions of Ultrahazardous Flooding across the Wildland Urban Interface
荒地城市界面超危险洪水的动态和感知
- 批准号:
2031535 - 财政年份:2021
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
Collaborative Research: Urban Flooding and Residential Adaptation
合作研究:城市洪水与住宅适应
- 批准号:
2116488 - 财政年份:2021
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
Evaluating coastal vegetation in urban adaptation to sea level rise and flooding.
评估城市适应海平面上升和洪水的沿海植被。
- 批准号:
559860-2021 - 财政年份:2021
- 资助金额:
$ 500万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




