RAPID: AI-driven Innovations for COVID-19 Themed Malware Detection
RAPID:AI 驱动的 COVID-19 主题恶意软件检测创新
基本信息
- 批准号:2034470
- 负责人:
- 金额:$ 10.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The fast evolving and deadly outbreak of coronavirus disease (COVID-19) has posed grand challenges to human society. In the fight against the global pandemic, many social activities have moved online. Society's unprecedented reliance on the complex cyberspace makes its security more important than ever. Unfortunately, utilizing both fear and financial incentives, cyber threat actors are using COVID-19 or coronavirus as a lure all over the spectrum of sophistication to spread malware (i.e., software that deliberately fulfills the harmful intent to legitimate users) to gain profits from the pandemic. The malware with a COVID-19 theme (e.g., CovidLock, COVID-19 Banking Trojans) have become more and more sophisticated and resilient by using various tactics to fool the defenders and bypass their detection. This points to an imminent need for innovative techniques to combat the exponential growth of increasingly sophisticated COVID-19 themed malware so that users can be better protected in the cyberspace. By advancing capabilities of artificial intelligence (AI), the goal of this project is to develop innovative links between AI and security to design and develop an integrated framework for COVID-19 themed malware detection to help mitigate its negative effects on public health, society, and the economy. The outcomes of this project (including open-source codes and generated benchmarks) will be made publicly available. The project integrates research with education through innovative curriculum development, student mentoring activities, and broadening participation of underrepresented groups.The research has three key components. First, in addition to using content-based features, the project will develop a novel heterogeneous information network to characterize and represent applications (apps) and their complex social relations within the new ecosystem in a comprehensive manner. Second, the team will develop an innovative adversarial disentangler to separate the distinct, informative factors of variations hidden in the app representations needed for large-scale COVID-19 themed malware detection. Third, the team will design and develop a deep learning based classifier with interpretability enhancement for the detection and understanding of how malware spread. The developed framework for the understanding of how malware spread will facilitate a predictive understanding of the spread of coronavirus. By providing the system for COVID-19 themed malware detection to reduce mental anguish and financial loss for users, the planned work will help mitigate the negative effects of COVID-19 on public health, society, and the economy. The proposed research will be beneficial to multidisciplinary areas, including phishing fraud detection, spam filtering, and other domains such as data mining and machine learning where multiple data sources are involved.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新型冠状病毒病(COVID-19)的快速发展和致命爆发给人类社会带来了巨大挑战。在抗击全球大流行的斗争中,许多社交活动都转移到了网上。社会对复杂的网络空间的前所未有的依赖使其安全比以往任何时候都更加重要。不幸的是,利用恐惧和经济激励,网络威胁行为者正在使用COVID-19或冠状病毒作为诱饵,在复杂的范围内传播恶意软件(即,故意实现对合法用户有害意图的软件),以从疫情中获利。带有COVID-19主题的恶意软件(例如,CovidLock,COVID-19银行木马)通过使用各种策略来欺骗防御者并绕过他们的检测,变得越来越复杂和有弹性。这表明迫切需要创新技术来对抗日益复杂的COVID-19主题恶意软件的指数增长,以便用户可以在网络空间中得到更好的保护。通过提升人工智能(AI)的能力,该项目的目标是开发AI与安全之间的创新联系,以设计和开发COVID-19主题恶意软件检测的综合框架,以帮助减轻其对公共卫生,社会和经济的负面影响。该项目的成果(包括开放源代码和生成的基准)将公开提供。该项目通过创新课程开发、学生辅导活动和扩大代表性不足群体的参与,将研究与教育结合起来。首先,除了使用基于内容的功能外,该项目还将开发一种新型的异构信息网络,以全面的方式表征和表示新生态系统中的应用程序(应用程序)及其复杂的社会关系。其次,该团队将开发一种创新的对抗性分解器,以分离隐藏在应用程序表示中的差异的独特信息因素,以进行大规模COVID-19主题的恶意软件检测。第三,该团队将设计和开发一个基于深度学习的分类器,具有可解释性增强功能,用于检测和理解恶意软件的传播方式。为理解恶意软件如何传播而开发的框架将有助于对冠状病毒传播的预测性理解。通过提供以COVID-19为主题的恶意软件检测系统,以减少用户的精神痛苦和经济损失,计划中的工作将有助于减轻COVID-19对公共卫生,社会和经济的负面影响。这项研究将有益于多学科领域,包括网络钓鱼欺诈检测、垃圾邮件过滤,以及涉及多个数据源的数据挖掘和机器学习等其他领域。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heterogeneous Graph Structure Learning for Graph Neural Networks
- DOI:10.1609/aaai.v35i5.16600
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Jianan Zhao;Xiao Wang;C. Shi;Binbin Hu;Guojie Song;Yanfang Ye
- 通讯作者:Jianan Zhao;Xiao Wang;C. Shi;Binbin Hu;Guojie Song;Yanfang Ye
Joint Demosaicing and Super-Resolution (JDSR): Network Design and Perceptual Optimization
- DOI:10.1109/tci.2020.2999819
- 发表时间:2019-11
- 期刊:
- 影响因子:5.4
- 作者:Xuan Xu;Yanfang Ye;Xin Li
- 通讯作者:Xuan Xu;Yanfang Ye;Xin Li
Disentangled Representation Learning in Heterogeneous Information Network for Large-scale Android Malware Detection in the COVID-19 Era and Beyond
- DOI:10.1609/aaai.v35i9.16947
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Shifu Hou;Yujie Fan;Mingxuan Ju;Yanfang Ye;Wenqiang Wan;Kui Wang;Y. Mei;Qi Xiong;Fudong Shao
- 通讯作者:Shifu Hou;Yujie Fan;Mingxuan Ju;Yanfang Ye;Wenqiang Wan;Kui Wang;Y. Mei;Qi Xiong;Fudong Shao
Incremental Multi-source Feature Learning and its Applications in Spatio-temporal Event Prediction
增量多源特征学习及其在时空事件预测中的应用
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:3.6
- 作者:Zhao, Liang;Gao, Yuyang;Ye, Jieping;Chen, Feng;Ye, Yanfang;Lu, Chang-Tien;Ramakrishnan, Naren
- 通讯作者:Ramakrishnan, Naren
WebEvo: TamingWeb Application Evolution via Detecting Semantic Structure Change
WebEvo:通过检测语义结构变化来驯服 Web 应用程序演化
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Shao, Fei;Xu, Rui;Haque, Wasif;Zu, Jingwei;Zhang, Ying;Yang, Wei;Ye, Yanfang;Xiao, Xusheng
- 通讯作者:Xiao, Xusheng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanfang Ye其他文献
Classifying construction site photos for roof detection
对施工现场照片进行分类以进行屋顶检测
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Madhuri Siddula;F. Dai;Yanfang Ye;Jianping Fan - 通讯作者:
Jianping Fan
Efficacy and safety of cadonilimab (PD-1/CTLA-4 bispecific) in combination with chemotherapy in anti-PD-1-resistant recurrent or metastatic nasopharyngeal carcinoma: a single-arm, open-label, phase 2 trial
- DOI:
10.1186/s12916-025-03985-4 - 发表时间:
2025-03-11 - 期刊:
- 影响因子:8.300
- 作者:
Yaofei Jiang;Weixin Bei;Lin Wang;Nian Lu;Cheng Xu;Hu Liang;Liangru Ke;Yanfang Ye;Shuiqing He;Shuhui Dong;Qin Liu;Chuanrun Zhang;Xuguang Wang;Weixiong Xia;Chong Zhao;Ying Huang;Yanqun Xiang;Guoying Liu - 通讯作者:
Guoying Liu
THERMO-SENSITIVE SPIKELET DEFECTS 1 acclimatizes rice spikelet initiation and development to high temperature
热敏小穗缺陷 1 使水稻小穗的萌生和发育适应高温
- DOI:
10.1093/plphys/kiac576 - 发表时间:
2023 - 期刊:
- 影响因子:7.4
- 作者:
Zhengzheng Cai;Gang Wang;Jieqiong Li;Lan Kong;Weiqi Tang;Xuequn Chen;Xiaojie Qu;Chenchen Lin;Yulin Peng;Yang Liu;Zhanlin Deng;Yanfang Ye;Weiren Wu;Yuanlin Duan - 通讯作者:
Yuanlin Duan
ISMCS: An intelligent instruction sequence based malware categorization system
ISMCS:基于智能指令序列的恶意软件分类系统
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Kaiming Huang;Yanfang Ye;Qinshan Jiang - 通讯作者:
Qinshan Jiang
Survival neural networks for time-to-event prediction in longitudinal study
用于纵向研究中事件发生时间预测的生存神经网络
- DOI:
10.1007/s10115-020-01472-1 - 发表时间:
2020-05 - 期刊:
- 影响因子:2.7
- 作者:
张健飞;陈黎飞;Yanfang Ye;郭躬德;Rongbo Chen;Alain Vanasse;王声瑞 - 通讯作者:
王声瑞
Yanfang Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanfang Ye', 18)}}的其他基金
EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
- 批准号:
2334193 - 财政年份:2023
- 资助金额:
$ 10.61万 - 项目类别:
Standard Grant
III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
- 批准号:
2321504 - 财政年份:2023
- 资助金额:
$ 10.61万 - 项目类别:
Standard Grant
D-ISN: An AI-augmented Framework to Detect, Disrupt, and Dismantle Opioid Trafficking Networks
D-ISN:用于检测、破坏和拆除阿片类药物贩运网络的人工智能增强框架
- 批准号:
2146076 - 财政年份:2022
- 资助金额:
$ 10.61万 - 项目类别:
Standard Grant
CAREER: Securing Cyberspace: Gaining Deep Insights into the Online Underground Ecosystem
职业:保护网络空间:深入了解在线地下生态系统
- 批准号:
2203261 - 财政年份:2021
- 资助金额:
$ 10.61万 - 项目类别:
Continuing Grant
EAGER: An AI-driven Paradigm for Collective and Collaborative Community Resilience in the COVID-19 Era and Beyond
EAGER:COVID-19 时代及以后的集体和协作社区复原力的人工智能驱动范式
- 批准号:
2209814 - 财政年份:2021
- 资助金额:
$ 10.61万 - 项目类别:
Standard Grant
III: Small: Mining Heterogeneous Network Built from Multiple Data Sources to Reduce Opioid Overdose Risks
III:小型:挖掘由多个数据源构建的异构网络以减少阿片类药物过量风险
- 批准号:
2214376 - 财政年份:2021
- 资助金额:
$ 10.61万 - 项目类别:
Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
- 批准号:
2217239 - 财政年份:2021
- 资助金额:
$ 10.61万 - 项目类别:
Continuing Grant
CICI: SSC: SciTrust: Enhancing Security for Modern Software Programming Cyberinfrastructure
CICI:SSC:SciTrust:增强现代软件编程网络基础设施的安全性
- 批准号:
2218762 - 财政年份:2021
- 资助金额:
$ 10.61万 - 项目类别:
Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
- 批准号:
2107172 - 财政年份:2021
- 资助金额:
$ 10.61万 - 项目类别:
Continuing Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
- 批准号:
2203262 - 财政年份:2021
- 资助金额:
$ 10.61万 - 项目类别:
Standard Grant
相似国自然基金
AI 辅助药物设计姜黄素化合物的靶向结构修饰及其防治肝衰竭的成药性研究
- 批准号:JCZRLH202500512
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
应用于AI芯片的先进封装TSV关键技术研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动的工业微生物合成元件挖掘与产品智造
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“治未病”理论构建AI赋能下的肥胖伴焦虑状态针灸数智化防治体系
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AI 技术的高校网络舆情监测与治理路径研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于可穿戴设备与AI动态优化的阿尔茨海默病早期生活方式干预系统研发及效应研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动药物研发的技术发展趋势及重庆技术创新路径选择战略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
患者安全视角下医疗AI技术对医务人员风险感知的双刃剑机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
- 批准号:
10099966 - 财政年份:2024
- 资助金额:
$ 10.61万 - 项目类别:
Collaborative R&D
Maintaining Human Expertise in an AI-driven World
在人工智能驱动的世界中保持人类的专业知识
- 批准号:
DE240100269 - 财政年份:2024
- 资助金额:
$ 10.61万 - 项目类别:
Discovery Early Career Researcher Award
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
$ 10.61万 - 项目类别:
Standard Grant
An innovative, AI-driven application that helps users assess/action information pollution for social media content.
一款创新的人工智能驱动应用程序,可帮助用户评估/消除社交媒体内容的信息污染。
- 批准号:
10100049 - 财政年份:2024
- 资助金额:
$ 10.61万 - 项目类别:
Collaborative R&D
A self-guided and monitored innovative AI-driven parental support intervention (mobile app), for families caring for a young one that self-harms: feasibility study
一种自我指导和监控的创新型人工智能驱动的家长支持干预措施(移动应用程序),适用于照顾自残儿童的家庭:可行性研究
- 批准号:
10101171 - 财政年份:2024
- 资助金额:
$ 10.61万 - 项目类别:
Collaborative R&D
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 10.61万 - 项目类别:
Launchpad
AI-Driven Methodologies for Automating Operations in 5G/6G Networks
用于 5G/6G 网络中自动化操作的人工智能驱动方法
- 批准号:
2903756 - 财政年份:2024
- 资助金额:
$ 10.61万 - 项目类别:
Studentship
CAREER: HayaRupu: Accelerating Natural Hazard Engineering with AI-Driven Discovery Loops
职业:HayaRupu:利用人工智能驱动的发现循环加速自然灾害工程
- 批准号:
2339678 - 财政年份:2024
- 资助金额:
$ 10.61万 - 项目类别:
Continuing Grant
Intersubjective AI-driven multimodal interaction for advanced user-centric human robot collaborative applications (Jarvis)
主体间人工智能驱动的多模式交互,用于以用户为中心的高级人类机器人协作应用程序 (Jarvis)
- 批准号:
10099311 - 财政年份:2024
- 资助金额:
$ 10.61万 - 项目类别:
EU-Funded
Enhanced AI-driven risk-engine for world’s first open-banking credit-builder debit card
增强型人工智能驱动的风险引擎,用于全球首张开放银行信用建设借记卡
- 批准号:
10097739 - 财政年份:2024
- 资助金额:
$ 10.61万 - 项目类别:
Collaborative R&D