FMSG: Integrating Artificial Intelligence in Chemical Vapor Deposition for In-situ Predictive Crystal Growth Manufacturing.

FMSG:将人工智能集成到化学气相沉积中,用于原位预测晶体生长制造。

基本信息

  • 批准号:
    2036737
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

In electronics, large crystal of silicon is used as the basis for semiconductor computer chips and switching devices for electric grid applications. The efficiency of electronic devices is dependent on the perfection of the crystals as it offers better control of electron flow without loss. Different types of semiconductor crystals, like diamond, can outperform silicon but are essentially unavailable for use. The current project proposes to use artificial intelligence on the data generated and collected during crystal growth to predict parameters instead of trial and error for growth of defect free crystals. The use artificial intelligence will assess the data generated during the growth process itself, the current state of crystal growth, and predict the growth results. Development and integration of deep learning artificial intelligence architectures in the Chemical Vapor Deposition process will make growth predictions more accurate and add defect assessment to the prediction for manufacturing of diamond material System. Outcome of the project will accelerate the development cycles and reduce costs for manufacturing processes which will be adaptable to a broad range of crystal growth processes for electronics. Concepts developed in the project will be integrated into existing courses, capstone projects will be designed for students, and education modules will be developed for training operators. A course in data collection, handling, and interpretation will be developed for vocational workers to understand, adapt, and team with artificial intelligence augmented manufacturing machines in the work environment. The course will be disseminated to manufacturing community by partnering with the Automation Alley, an industry manufacturing consortium.The proposed project will design and develop a holistic artificial intelligence platform to solve the problems of traditional approaches for growth of large-scale crystalline diamond material system. The approach will focus on increasing the resolution of image collection and training the program to resolve problems with spatio-temporal data, including: (1) checkerboard artifacts, (2) lack of photo-realism, and (3) inability to prevent feature loss, while maintaining a large frame resolution. Further, the artificial intelligence architectures developed for this project will be merged into solutions for frame prediction based on input time series parameters like temperature and defects to achieve state-of-the-art accuracy metrics in growth state prediction. The large scale and defect free diamond material system is one of the most challenging and holds the promise of revolutionizing power device technology. The enhanced predictive capabilities proposed in this project derived from higher resolution images and incorporation of microscope defect data will enable in-process control of the evolving growth process for diamond and will lead the way for fully automated process control of crystal growth processes for manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在电子学中,硅的大晶体被用作半导体计算机芯片和电网应用的开关器件的基础。电子器件的效率取决于晶体的完美性,因为它可以更好地控制电子流而不会损失。不同类型的半导体晶体,如金刚石,可以胜过硅,但基本上无法使用。目前的项目建议在晶体生长过程中生成和收集的数据上使用人工智能来预测参数,而不是在无缺陷晶体的生长中试错。利用人工智能将评估生长过程本身所产生的数据、晶体生长的当前状态,并预测生长结果。在化学气相沉积工艺中开发和集成深度学习人工智能架构将使生长预测更加准确,并为金刚石材料系统的制造预测增加缺陷评估。 该项目的成果将加快开发周期,降低制造过程的成本,这将适用于广泛的电子晶体生长过程。该项目中开发的概念将被纳入现有课程,顶点项目将为学生设计,并将为培训运营商开发教育模块。 将为职业工人开发数据收集,处理和解释课程,以便在工作环境中理解,适应和与人工智能增强制造机器合作。该课程将通过与工业制造联盟Automation Alley合作向制造业社区传播。拟议项目将设计和开发一个整体人工智能平台,以解决大规模晶体金刚石材料系统生长的传统方法的问题。该方法将专注于提高图像采集的分辨率,并训练程序来解决时空数据的问题,包括:(1)棋盘伪影,(2)缺乏照片真实感,以及(3)无法防止特征丢失,同时保持大帧分辨率。此外,为该项目开发的人工智能架构将合并到基于温度和缺陷等输入时间序列参数的帧预测解决方案中,以实现最先进的生长状态预测准确性指标。大尺寸无缺陷金刚石材料系统是最具挑战性的系统之一,并有望彻底改变功率器件技术。该项目中提出的增强预测能力源自更高分辨率的图像和显微镜缺陷数据的结合,将使不断发展的金刚石生长过程的过程控制,并将引领制造业晶体生长过程的全自动过程控制。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和知识的评估被认为值得支持更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qi Fan其他文献

Multiple random empirical kernel learning with margin reinforcement for imbalance problems
针对不平衡问题的带有裕度强化的多重随机经验核学习
Off-stoichiometric Li3-3xV2+x(PO4)3/C as cathode materials for high-performance lithium-ion batteries
非化学计量Li3-3xV2 x(PO4)3/C作为高性能锂离子电池正极材料
  • DOI:
    10.1016/j.jpowsour.2015.06.027
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Pingping Sun;Sai Qin;Xiuzhen Wang;Ruiyi An;Qingyu Xu;Xia Cui;Yueming Sun;Shuangbao Wang;Peng Wang;Qi Fan
  • 通讯作者:
    Qi Fan
Expression Patterns and Implications of LaminB1 in Rat Cochleae
LaminB1 在大鼠耳蜗中的表达模式和意义
  • DOI:
    10.1007/s11596-019-2035-1
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Du Zhi-hui;Chen Jin;Chen Qing-guo;Zhou Liang-qiang;Bing Dan;Liu Yun;Sun Yan-bo;Li Peng-jun;Qi Fan;Zhu Hong-mei;Chu Han-qi
  • 通讯作者:
    Chu Han-qi
Improved performance of poplar wood by an environmentally-friendly process combining surface impregnation of a reactive waterborne acrylic resin and unilateral surface densification
通过结合反应性水性丙烯酸树脂表面浸渍和单侧表面致密化的环保工艺提高杨木的性能
  • DOI:
    10.1016/j.jclepro.2020.121022
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Jiangwei Wu;Qi Fan;Qingwen Wang;Qiong Guo;Dengyun Tu;Chuanfu Chen;Yuying Xiao;Rongxian Ou
  • 通讯作者:
    Rongxian Ou
Synthesizing nonstoichiometric Li3−3xV2+x(PO4)3/C as cathode materials for high-performance lithium-ion batteries by solid state reaction
固相反应合成非化学计量Li3-3xV2 x(PO4)3/C作为高性能锂离子电池正极材料
  • DOI:
    10.1039/c7ra04842d
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pingping Sun;Ningang Su;Yuanting Wang;Qingyu Xu;Qi Fan;Yueming Sun
  • 通讯作者:
    Yueming Sun

Qi Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qi Fan', 18)}}的其他基金

Manufacturing of High-Efficiency Perovskite Solar Cells via Coupled Ion Source and Magnetron Discharges
通过耦合离子源和磁控管放电制造高效钙钛矿太阳能电池
  • 批准号:
    2243110
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
PFI-TT: Developing an Efficient Computation Scheme for Modeling Low-Pressure Plasmas
PFI-TT:开发低压等离子体建模的高效计算方案
  • 批准号:
    1917577
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Resolving Abnormal Target Erosion in High Frequency Magnetron Discharge
解决高频磁控管放电中靶材异常侵蚀问题
  • 批准号:
    1724941
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Using Plasma Electrolysis for Efficient Manufacturing of Nanoparticles
利用等离子体电解高效制造纳米粒子
  • 批准号:
    1700787
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
High-density Plasma for Efficient Manufacturing of Electronic Devices
用于电子设备高效制造的高密度等离子体
  • 批准号:
    1700785
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
High-density Plasma for Efficient Manufacturing of Electronic Devices
用于电子设备高效制造的高密度等离子体
  • 批准号:
    1462389
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Using Plasma Electrolysis for Efficient Manufacturing of Nanoparticles
利用等离子体电解高效制造纳米粒子
  • 批准号:
    1536209
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
I-Corps: High-value surface modifications with nanomaterial thin films
I-Corps:利用纳米材料薄膜进行高价值表面改性
  • 批准号:
    1248454
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
  • 批准号:
    2332060
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Integrating an Artificial Intelligence-Driven, Culturally Responsible Digital Graphic Novel Curriculum into STEM Introductory Biology Courses
将人工智能驱动、对文化负责的数字图画小说课程融入 STEM 生物学入门课程
  • 批准号:
    2234281
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Development of a new educational system integrating artificial intelligence and cognitive science in cystoscopy
开发融合人工智能和认知科学的膀胱镜检查新教育系统
  • 批准号:
    23K08710
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NCS-FO: Functional and neural mechanisms of integrating multiple artificial somatosensory feedback signals in prosthesis control
NCS-FO:在假肢控制中集成多个人工体感反馈信号的功能和神经机制
  • 批准号:
    2327217
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
FMSG:BIO: Integrating Artificial Intelligence with Bioprinting for Future Manufacturing of Organoids
FMSG:BIO:将人工智能与生物打印相结合,用于未来类器官的制造
  • 批准号:
    2229156
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Modeling geospatial processes: Integrating artificial intelligence with complexity, networks and geographic information sciences
地理空间过程建模:将人工智能与复杂性、网络和地理信息科学相结合
  • 批准号:
    RGPIN-2017-03939
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating Artificial Intelligence for Optimal Analysis of CardiacPET/CT
集成人工智能以优化心脏 PET/CT 分析
  • 批准号:
    10593858
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Integrating Artificial Intelligence for Optimal Analysis of CardiacPET/CT
集成人工智能以优化心脏 PET/CT 分析
  • 批准号:
    10708921
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Integrating artificial intelligence, operations research, and big data analytics for decision and risk analysis
集成人工智能、运筹学和大数据分析进行决策和风险分析
  • 批准号:
    RGPIN-2018-05988
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating artificial intelligence, operations research, and big data analytics for decision and risk analysis
集成人工智能、运筹学和大数据分析进行决策和风险分析
  • 批准号:
    RGPIN-2018-05988
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了