FMSG: Integrating Artificial Intelligence in Chemical Vapor Deposition for In-situ Predictive Crystal Growth Manufacturing.
FMSG:将人工智能集成到化学气相沉积中,用于原位预测晶体生长制造。
基本信息
- 批准号:2036737
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In electronics, large crystal of silicon is used as the basis for semiconductor computer chips and switching devices for electric grid applications. The efficiency of electronic devices is dependent on the perfection of the crystals as it offers better control of electron flow without loss. Different types of semiconductor crystals, like diamond, can outperform silicon but are essentially unavailable for use. The current project proposes to use artificial intelligence on the data generated and collected during crystal growth to predict parameters instead of trial and error for growth of defect free crystals. The use artificial intelligence will assess the data generated during the growth process itself, the current state of crystal growth, and predict the growth results. Development and integration of deep learning artificial intelligence architectures in the Chemical Vapor Deposition process will make growth predictions more accurate and add defect assessment to the prediction for manufacturing of diamond material System. Outcome of the project will accelerate the development cycles and reduce costs for manufacturing processes which will be adaptable to a broad range of crystal growth processes for electronics. Concepts developed in the project will be integrated into existing courses, capstone projects will be designed for students, and education modules will be developed for training operators. A course in data collection, handling, and interpretation will be developed for vocational workers to understand, adapt, and team with artificial intelligence augmented manufacturing machines in the work environment. The course will be disseminated to manufacturing community by partnering with the Automation Alley, an industry manufacturing consortium.The proposed project will design and develop a holistic artificial intelligence platform to solve the problems of traditional approaches for growth of large-scale crystalline diamond material system. The approach will focus on increasing the resolution of image collection and training the program to resolve problems with spatio-temporal data, including: (1) checkerboard artifacts, (2) lack of photo-realism, and (3) inability to prevent feature loss, while maintaining a large frame resolution. Further, the artificial intelligence architectures developed for this project will be merged into solutions for frame prediction based on input time series parameters like temperature and defects to achieve state-of-the-art accuracy metrics in growth state prediction. The large scale and defect free diamond material system is one of the most challenging and holds the promise of revolutionizing power device technology. The enhanced predictive capabilities proposed in this project derived from higher resolution images and incorporation of microscope defect data will enable in-process control of the evolving growth process for diamond and will lead the way for fully automated process control of crystal growth processes for manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在电子产品中,硅的大晶体被用作半导体计算机芯片和用于电网应用的开关设备的基础。电子设备的效率取决于晶体的完美,因为它可以更好地控制电子流,而不会损失。钻石等不同类型的半导体晶体可以胜过硅,但基本上不可用。当前的项目建议对晶体生长过程中生成和收集的数据使用人工智能来预测参数,而不是反复试验,而不是自由晶体的生长。使用人工智能将评估生长过程本身,晶体生长的当前状态中产生的数据,并预测增长结果。深度学习人工智能体系结构在化学蒸气沉积过程中的开发和整合将使增长预测更加准确,并为制造钻石材料系统的预测增加缺陷评估。 该项目的结果将加速开发周期并降低制造过程的成本,这些过程将适应电子产品的广泛晶体生长过程。该项目中开发的概念将集成到现有课程中,Capstone项目将为学生设计,并将为培训运营商开发教育模块。 将开发数据收集,处理和解释的课程,以供职业工人在工作环境中使用人工智能增强制造机的理解,适应和团队。该课程将通过与自动化巷(Automation Alley)合作(一个行业制造联盟)将其传播到制造业社区。拟议的项目将设计和开发整体人工智能平台,以解决传统方法的问题,以增长大型晶体钻石材料系统。该方法将着重于增加图像收集和培训程序以解决时空数据的问题,包括:(1)棋盘伪影,(2)缺乏照相真实主义,以及(3)无法防止特征丢失,同时保持大型框架分辨率。此外,根据输入时间序列参数(如温度和缺陷),将为该项目开发的人工智能体系结构将合并为框架预测的解决方案,以实现生长状态预测中的最新准确度指标。大规模和缺陷的无钻石材料系统是最具挑战性的钻石材料系统之一,并具有革新电力设备技术的希望。该项目中提出的增强的预测能力从较高的分辨率图像和显微镜缺陷数据纳入将能够对钻石不断发展的增长过程进行过程控制,并将为制造业的晶体增长过程完全自动化的过程控制带来途径。该奖项奖励NSF的法定任务反映了通过评估范围的构成群体的支持者的范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qi Fan其他文献
A CTAB-modified S/C nanocomposite cathode for high performance Li–S batteries
用于高性能锂硫电池的 CTAB 改性 S/C 纳米复合材料正极
- DOI:
10.1039/c6ra16361k - 发表时间:
2016-09 - 期刊:
- 影响因子:3.9
- 作者:
Xiuzhen Wang;Sai Qin;Pingping Sun;Yueming Sun;Qingyu Xu;Changwei Lai;Qi Fan - 通讯作者:
Qi Fan
Conductive polyaniline coated on aluminum substrate as bi-functional materials with high-performance microwave absorption and low infrared emissivity
铝基板上涂覆的导电聚苯胺作为高性能微波吸收和低红外发射率的双功能材料
- DOI:
10.1016/j.synthmet.2020.116640 - 发表时间:
2021 - 期刊:
- 影响因子:4.4
- 作者:
Anfeng Zhu;Honglong Xing;Qi Fan;Xiaoli Ji;Ping Yang - 通讯作者:
Ping Yang
Biodegradable Copper-Based Nanoparticles Augmented Chemodynamic Therapy through Deep Penetration and Suppressing Antioxidant Activity in Tumors.
可生物降解的铜基纳米颗粒通过深层渗透和抑制肿瘤中的抗氧化活性增强化学动力学治疗。
- DOI:
10.1002/adhm.202100412 - 发表时间:
2021 - 期刊:
- 影响因子:10
- 作者:
Zheng Runxiao;Cheng Yan;Qi Fan;Wu Yunyun;Han Xiaoqing;Yan Jiao;Zhang Haiyuan - 通讯作者:
Zhang Haiyuan
Disaggregation and separation dynamics of magnetic particles in a microfluidic flow under an alternating gradient magnetic field
交变梯度磁场下微流控中磁性颗粒的解聚与分离动力学
- DOI:
10.1088/1361-6463/aab9dd - 发表时间:
2018-04 - 期刊:
- 影响因子:0
- 作者:
Quanliang Cao;Zhenhao Li;Zhen Wang;Qi Fan;Xiaotao Han - 通讯作者:
Xiaotao Han
Optimization of the window function for digital hologram apodization in reconstructing the holographic image
全息图像重建中数字全息图变迹窗函数的优化
- DOI:
10.1088/2040-8978/15/10/105406 - 发表时间:
2013 - 期刊:
- 影响因子:2.1
- 作者:
Yancao Zhang;Qi Fan;Xinchao Li;Jianjun Shi;Baiyu Yang - 通讯作者:
Baiyu Yang
Qi Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qi Fan', 18)}}的其他基金
Manufacturing of High-Efficiency Perovskite Solar Cells via Coupled Ion Source and Magnetron Discharges
通过耦合离子源和磁控管放电制造高效钙钛矿太阳能电池
- 批准号:
2243110 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
PFI-TT: Developing an Efficient Computation Scheme for Modeling Low-Pressure Plasmas
PFI-TT:开发低压等离子体建模的高效计算方案
- 批准号:
1917577 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Resolving Abnormal Target Erosion in High Frequency Magnetron Discharge
解决高频磁控管放电中靶材异常侵蚀问题
- 批准号:
1724941 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Using Plasma Electrolysis for Efficient Manufacturing of Nanoparticles
利用等离子体电解高效制造纳米粒子
- 批准号:
1700787 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
High-density Plasma for Efficient Manufacturing of Electronic Devices
用于电子设备高效制造的高密度等离子体
- 批准号:
1700785 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Using Plasma Electrolysis for Efficient Manufacturing of Nanoparticles
利用等离子体电解高效制造纳米粒子
- 批准号:
1536209 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
High-density Plasma for Efficient Manufacturing of Electronic Devices
用于电子设备高效制造的高密度等离子体
- 批准号:
1462389 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
I-Corps: High-value surface modifications with nanomaterial thin films
I-Corps:利用纳米材料薄膜进行高价值表面改性
- 批准号:
1248454 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
考虑参照依赖消费者的在线零售商信息与退货策略及其整合机制研究
- 批准号:72302176
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海洋来源二倍半萜MHO7靶向整合素β8/TGF-β轴调控EMT抑制三阴性乳腺癌转移的作用机制研究
- 批准号:82304550
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
DRGs驱动价值医疗背景下的医疗资源整合机制与优化策略研究
- 批准号:72372170
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
多孔PEEK搭载CuCe纳米酶/柠康酸时序性调控线粒体代谢促进免疫化骨整合的机制研究
- 批准号:82302669
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
- 批准号:
2332060 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Integrating an Artificial Intelligence-Driven, Culturally Responsible Digital Graphic Novel Curriculum into STEM Introductory Biology Courses
将人工智能驱动、对文化负责的数字图画小说课程融入 STEM 生物学入门课程
- 批准号:
2234281 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Integrating Clinical, Pathologic, and Immune Features to Predict Breast Cancer Recurrence and Chemotherapy Benefit
整合临床、病理和免疫特征来预测乳腺癌复发和化疗获益
- 批准号:
10723924 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Development of a new educational system integrating artificial intelligence and cognitive science in cystoscopy
开发融合人工智能和认知科学的膀胱镜检查新教育系统
- 批准号:
23K08710 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NCS-FO: Functional and neural mechanisms of integrating multiple artificial somatosensory feedback signals in prosthesis control
NCS-FO:在假肢控制中集成多个人工体感反馈信号的功能和神经机制
- 批准号:
2327217 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant