Manufacturing of High-Efficiency Perovskite Solar Cells via Coupled Ion Source and Magnetron Discharges
通过耦合离子源和磁控管放电制造高效钙钛矿太阳能电池
基本信息
- 批准号:2243110
- 负责人:
- 金额:$ 43.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award supports fundamental research that contributes new knowledge to enable the manufacturing of high-efficiency perovskite solar cells, promoting the generation and use of clean energy thus advancing national prosperity. Perovskite solar cells are emerging photovoltaic devices and have recently achieved power conversion efficiencies exceeding 25 percent. A critical component of perovskite solar cells is a transparent conductive oxide thin film of about 100 nanometer thickness, which acts as the top electrode to collect the photocurrent while allowing light to pass through. The perovskite layer underneath the top electrode is heat-sensitive and demands room-temperature deposition of the transparent conductive film. However, oxide thin films grown at room temperature by conventional magnetron sputtering – the standard industrial technology used for manufacturing thin films – have amorphous structures that result in poor electrical conductivity and low optical transmittance. This challenge has become a critical barrier limiting the energy conversion efficiencies of perovskite solar cells. This project advances the knowledge of plasma discharges to enable ion-beam-enhanced soft sputtering, which permits room-temperature growth of highly transparent and conductive oxide thin films that significantly enhance solar cell efficiency and performance. The broad use of renewable energy supports a sustainable economy and addresses global environmental concerns. This project integrates multidisciplinary research and training activities for graduate and undergraduate students and prepares them for a highly skilled future workforce. Besides advanced manufacturing, the project advances the field of plasma physics. This award also supports NSF's ECosystem for Leading Innovation in Plasma Science and Engineering (ECLIPSE) program.Highly transparent and conductive oxide thin films, such as indium-tin-oxide (ITO), have polycrystalline structures that could not be formed under off-phase-equilibrium conditions at low temperatures in classical physical vapor deposition. This research aims to validate the hypothesis that the interactions of an ion beam with the surface atoms are equivalent to localized heating at the atomic scale. Realizing effective ion-atom interactions requires overcoming the scientific barriers to creating a high-density soft low energy ion beam that is effectively coupled with magnetron sputtering. This research fills the knowledge gap on the energy distributions of the ion beam and the sputtered atoms under the coupled plasma discharges. The research team performs self-consistent particle-in-cell Monte Carlo simulations of the beam plasma source and magnetron sputtering, develops a model to elucidate the mutually enhanced ion-film and ion-target interactions, establishes the relationships between the plasma parameters and the resulting film microstructures and properties, and demonstrates high-efficiency perovskite solar cells.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持为制造高效钙钛矿太阳能电池贡献新知识的基础研究,促进清洁能源的产生和使用,从而促进国家繁荣。钙钛矿太阳能电池是新兴的光伏设备,最近实现了超过25%的功率转换效率。钙钛矿太阳能电池的一个关键部件是大约100纳米厚度的透明导电氧化物薄膜,它作为顶部电极收集光电流,同时允许光通过。顶部电极下面的钙钛矿层是热敏的,需要室温沉积透明导电膜。然而,通过传统磁控溅射(用于制造薄膜的标准工业技术)在室温下生长的氧化薄膜具有非晶结构,导致导电性差,透光率低。这一挑战已经成为限制钙钛矿太阳能电池能量转换效率的关键障碍。该项目推进了等离子体放电的知识,使离子束增强软溅射成为可能,这允许室温生长高透明和导电的氧化物薄膜,显著提高太阳能电池的效率和性能。可再生能源的广泛使用支持可持续经济并解决全球环境问题。该项目整合了研究生和本科生的多学科研究和培训活动,为他们未来的高技能劳动力做好准备。除了先进的制造业,该项目还推动了等离子体物理领域的发展。该奖项还支持NSF的等离子科学与工程领先创新生态系统(ECLIPSE)计划。高透明、高导电性的氧化薄膜,如铟锡氧化物(ITO),具有多晶结构,在经典的物理气相沉积中,在低温非相平衡条件下无法形成。本研究旨在验证离子束与表面原子的相互作用相当于原子尺度上的局部加热的假设。实现有效的离子-原子相互作用需要克服科学障碍,创造高密度软低能离子束,有效地与磁控溅射相结合。本研究填补了等离子体耦合放电下离子束和溅射原子能量分布的知识空白。研究小组对束等离子体源和磁控溅射进行了自一致的粒子在电池中的蒙特卡罗模拟,建立了一个模型来阐明离子-薄膜和离子-靶相互作用的相互增强,建立了等离子体参数与所产生的薄膜微观结构和性能之间的关系,并展示了高效的钙钛矿太阳能电池。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qi Fan其他文献
Improved performance of poplar wood by an environmentally-friendly process combining surface impregnation of a reactive waterborne acrylic resin and unilateral surface densification
通过结合反应性水性丙烯酸树脂表面浸渍和单侧表面致密化的环保工艺提高杨木的性能
- DOI:
10.1016/j.jclepro.2020.121022 - 发表时间:
2020-07 - 期刊:
- 影响因子:11.1
- 作者:
Jiangwei Wu;Qi Fan;Qingwen Wang;Qiong Guo;Dengyun Tu;Chuanfu Chen;Yuying Xiao;Rongxian Ou - 通讯作者:
Rongxian Ou
Synthesizing nonstoichiometric Li3−3xV2+x(PO4)3/C as cathode materials for high-performance lithium-ion batteries by solid state reaction
固相反应合成非化学计量Li3-3xV2 x(PO4)3/C作为高性能锂离子电池正极材料
- DOI:
10.1039/c7ra04842d - 发表时间:
2017-06 - 期刊:
- 影响因子:0
- 作者:
Pingping Sun;Ningang Su;Yuanting Wang;Qingyu Xu;Qi Fan;Yueming Sun - 通讯作者:
Yueming Sun
Off-stoichiometric Li3-3xV2+x(PO4)3/C as cathode materials for high-performance lithium-ion batteries
非化学计量Li3-3xV2 x(PO4)3/C作为高性能锂离子电池正极材料
- DOI:
10.1016/j.jpowsour.2015.06.027 - 发表时间:
2015 - 期刊:
- 影响因子:9.2
- 作者:
Pingping Sun;Sai Qin;Xiuzhen Wang;Ruiyi An;Qingyu Xu;Xia Cui;Yueming Sun;Shuangbao Wang;Peng Wang;Qi Fan - 通讯作者:
Qi Fan
Multiple random empirical kernel learning with margin reinforcement for imbalance problems
针对不平衡问题的带有裕度强化的多重随机经验核学习
- DOI:
10.1016/j.engappai.2020.103535 - 发表时间:
2020 - 期刊:
- 影响因子:8
- 作者:
Zhe Wang;Lilong Chen;Qi Fan;DongDong Li;Daqi Gao - 通讯作者:
Daqi Gao
Supporting Window Analytics over Large-scale Dynamic Graphs
支持大规模动态图的窗口分析
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Qi Fan;Zhengkui Wang;C. Chan;K. Tan - 通讯作者:
K. Tan
Qi Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qi Fan', 18)}}的其他基金
FMSG: Integrating Artificial Intelligence in Chemical Vapor Deposition for In-situ Predictive Crystal Growth Manufacturing.
FMSG:将人工智能集成到化学气相沉积中,用于原位预测晶体生长制造。
- 批准号:
2036737 - 财政年份:2020
- 资助金额:
$ 43.22万 - 项目类别:
Standard Grant
PFI-TT: Developing an Efficient Computation Scheme for Modeling Low-Pressure Plasmas
PFI-TT:开发低压等离子体建模的高效计算方案
- 批准号:
1917577 - 财政年份:2019
- 资助金额:
$ 43.22万 - 项目类别:
Standard Grant
Resolving Abnormal Target Erosion in High Frequency Magnetron Discharge
解决高频磁控管放电中靶材异常侵蚀问题
- 批准号:
1724941 - 财政年份:2017
- 资助金额:
$ 43.22万 - 项目类别:
Standard Grant
Using Plasma Electrolysis for Efficient Manufacturing of Nanoparticles
利用等离子体电解高效制造纳米粒子
- 批准号:
1700787 - 财政年份:2016
- 资助金额:
$ 43.22万 - 项目类别:
Standard Grant
High-density Plasma for Efficient Manufacturing of Electronic Devices
用于电子设备高效制造的高密度等离子体
- 批准号:
1700785 - 财政年份:2016
- 资助金额:
$ 43.22万 - 项目类别:
Standard Grant
High-density Plasma for Efficient Manufacturing of Electronic Devices
用于电子设备高效制造的高密度等离子体
- 批准号:
1462389 - 财政年份:2015
- 资助金额:
$ 43.22万 - 项目类别:
Standard Grant
Using Plasma Electrolysis for Efficient Manufacturing of Nanoparticles
利用等离子体电解高效制造纳米粒子
- 批准号:
1536209 - 财政年份:2015
- 资助金额:
$ 43.22万 - 项目类别:
Standard Grant
I-Corps: High-value surface modifications with nanomaterial thin films
I-Corps:利用纳米材料薄膜进行高价值表面改性
- 批准号:
1248454 - 财政年份:2012
- 资助金额:
$ 43.22万 - 项目类别:
Standard Grant
相似海外基金
Strategies enabling stable perovskite PV devices with efficiency beyond 25%
策略%20启用%20稳定%20钙钛矿%20PV%20设备%20和%20效率%20超越%2025%
- 批准号:
DE240101298 - 财政年份:2024
- 资助金额:
$ 43.22万 - 项目类别:
Discovery Early Career Researcher Award
Improving the Efficiency and Stability of Tin-Lead Perovskite Solar Cells for Applications in All-Perovskite Tandem Solar Cells
提高锡铅钙钛矿太阳能电池的效率和稳定性,用于全钙钛矿串联太阳能电池
- 批准号:
569541-2022 - 财政年份:2022
- 资助金额:
$ 43.22万 - 项目类别:
Postgraduate Scholarships - Doctoral
High-Efficiency Flexible and Scalable Halide-Perovskite Solar Modules
高效灵活且可扩展的卤化物钙钛矿太阳能模块
- 批准号:
EP/V027131/1 - 财政年份:2022
- 资助金额:
$ 43.22万 - 项目类别:
Research Grant
Boosting SUstaiNability, Reliability and EfficiencY of perovskite PV through novel materials and process engineering
通过新型材料和工艺工程提高钙钛矿光伏的可持续性、可靠性和效率
- 批准号:
10058454 - 财政年份:2022
- 资助金额:
$ 43.22万 - 项目类别:
EU-Funded
Boosting SUstaiNability, Reliability and EfficiencY of perovskite PV through novel materials and process engineering.
通过新型材料和工艺工程提高钙钛矿光伏的可持续性、可靠性和效率。
- 批准号:
10052189 - 财政年份:2022
- 资助金额:
$ 43.22万 - 项目类别:
EU-Funded
Large-area perovskite solar cell surpassing 25% efficiency
大面积%20钙钛矿%20太阳能%20电池%20超越%2025%%20效率
- 批准号:
561355-2020 - 财政年份:2022
- 资助金额:
$ 43.22万 - 项目类别:
Alliance Grants
Development of high efficiency lead free metal halide perovskite solar cells by employing a broad-band laser spectroscopy technique
采用宽带激光光谱技术开发高效无铅金属卤化物钙钛矿太阳能电池
- 批准号:
22H02182 - 财政年份:2022
- 资助金额:
$ 43.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Photovoltaic Lifetime Testing Apparatus for Improved Perovskite Cell Efficiency
用于提高钙钛矿电池效率的光伏寿命测试装置
- 批准号:
567186-2021 - 财政年份:2021
- 资助金额:
$ 43.22万 - 项目类别:
Engage Plus Grants for Colleges
"Interface Engineering for Maximizing the Efficiency of Halide Perovskite Indoor Photovoltaics"
“最大化卤化物钙钛矿室内光伏效率的界面工程”
- 批准号:
2600582 - 财政年份:2021
- 资助金额:
$ 43.22万 - 项目类别:
Studentship
Enhanced power conversion efficiency of perovskite solar cells with densification of crystal layer interface using vapor deposition method
利用气相沉积法致密化晶层界面提高钙钛矿太阳能电池的能量转换效率
- 批准号:
21K04970 - 财政年份:2021
- 资助金额:
$ 43.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)