High-density Plasma for Efficient Manufacturing of Electronic Devices

用于电子设备高效制造的高密度等离子体

基本信息

  • 批准号:
    1700785
  • 负责人:
  • 金额:
    $ 24.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

Plasma technology plays a critical role in manufacturing of electronic devices, such as flat panel displays, computer chips, and solar panels. Industry plasmas currently used for manufacturing suffer from multiple limitations, including low plasma density (which slows processing), poor uniformity over large areas, contamination of plasma and the resulting materials, and inefficient energy use. This award supports fundamental research on high-density plasma using a unique magnetically enhanced inductive plasma source. New knowledge obtained from the research will lead to novel plasma sources that enable efficient manufacturing of electronic devices and various thin-film products, significantly reducing the costs of consumer electronics, promoting the adoption of clean energy, and reducing the negative impact of manufacturing on the environment. This project will strengthen university-industry collaboration and economic competitiveness of the U.S. electronics industry. It will also contribute to workforce development by training students and attracting local tribal students to science and engineering. Industry plasmas are created by strong electromagnetic fields. The efficiency of plasma processing is mainly determined by plasma density, plasma temperature, and energy distribution of electrons and ions. Conventional low-density plasmas are excited by unconfined electromagnetic fields that allow energetic electrons to escape easily from the plasma region, while high-density plasmas can be created by confined electromagnetic fields that retain energetic electrons within the plasma region to greatly extend their lifetime. The confined electric and magnetic fields act simultaneously and have interaction effects on the plasma. Little is known about the properties of high-density plasma created by confined electromagnetic fields and the effects of the primary induction parameters (excitation frequency and magnetic field distribution) on plasma properties. To fill this knowledge gap, the research team will perform three tasks. First, establish a plasma simulation model using dedicated software COMSOL to describe fundamental plasma properties (including plasma density, plasma temperature, and energy distribution of electrons and ions). Second, use the established model to predict effects of excitation frequency and magnetic field distribution on plasma properties. Finally, verify some of the predicted results by experiments. For example, plasma density and electron energy distribution at a limited number of points of the plasma region will be measured using a Langmuir probe, and plasma density over the entire plasma region will be indirectly measured using an optical emission spectrometer.
等离子体技术在诸如平板显示器、计算机芯片和太阳能电池板等电子设备的制造中起着关键作用。目前用于制造的工业等离子体受到多种限制,包括低等离子体密度(其减慢处理)、大面积上的差的均匀性、等离子体和所得材料的污染以及低效的能量使用。该奖项支持使用独特的磁增强感应等离子体源进行高密度等离子体的基础研究。从研究中获得的新知识将导致新型等离子体源,使电子设备和各种薄膜产品的高效制造成为可能,大大降低消费电子产品的成本,促进清洁能源的采用,并减少制造对环境的负面影响。该项目将加强大学与产业的合作,提高美国电子行业的经济竞争力。它还将通过培训学生和吸引当地部落学生学习科学和工程,促进劳动力发展。 工业等离子体由强电磁场产生。等离子体处理的效率主要取决于等离子体密度、等离子体温度以及电子和离子的能量分布。传统的低密度等离子体是由非受限电磁场激发的,允许高能电子轻松地从等离子体区域逸出,而高密度等离子体可以由受限电磁场产生,将高能电子保留在等离子体区域内,大大延长其寿命。约束电场和磁场同时作用,对等离子体产生相互作用。关于由受限电磁场产生的高密度等离子体的性质以及主要感应参数(激励频率和磁场分布)对等离子体性质的影响知之甚少。为了填补这一知识空白,研究小组将执行三项任务。首先,使用专用软件COMSOL建立等离子体模拟模型,描述等离子体的基本特性(包括等离子体密度、等离子体温度、电子和离子的能量分布)。其次,利用所建立的模型预测了激励频率和磁场分布对等离子体特性的影响。最后通过实验验证了部分预测结果。例如,等离子体区域的有限数量的点处的等离子体密度和电子能量分布将使用朗缪尔探针测量,并且整个等离子体区域上的等离子体密度将使用光发射光谱仪间接测量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qi Fan其他文献

Multiple random empirical kernel learning with margin reinforcement for imbalance problems
针对不平衡问题的带有裕度强化的多重随机经验核学习
Off-stoichiometric Li3-3xV2+x(PO4)3/C as cathode materials for high-performance lithium-ion batteries
非化学计量Li3-3xV2 x(PO4)3/C作为高性能锂离子电池正极材料
  • DOI:
    10.1016/j.jpowsour.2015.06.027
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Pingping Sun;Sai Qin;Xiuzhen Wang;Ruiyi An;Qingyu Xu;Xia Cui;Yueming Sun;Shuangbao Wang;Peng Wang;Qi Fan
  • 通讯作者:
    Qi Fan
Expression Patterns and Implications of LaminB1 in Rat Cochleae
LaminB1 在大鼠耳蜗中的表达模式和意义
  • DOI:
    10.1007/s11596-019-2035-1
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Du Zhi-hui;Chen Jin;Chen Qing-guo;Zhou Liang-qiang;Bing Dan;Liu Yun;Sun Yan-bo;Li Peng-jun;Qi Fan;Zhu Hong-mei;Chu Han-qi
  • 通讯作者:
    Chu Han-qi
Improved performance of poplar wood by an environmentally-friendly process combining surface impregnation of a reactive waterborne acrylic resin and unilateral surface densification
通过结合反应性水性丙烯酸树脂表面浸渍和单侧表面致密化的环保工艺提高杨木的性能
  • DOI:
    10.1016/j.jclepro.2020.121022
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Jiangwei Wu;Qi Fan;Qingwen Wang;Qiong Guo;Dengyun Tu;Chuanfu Chen;Yuying Xiao;Rongxian Ou
  • 通讯作者:
    Rongxian Ou
Synthesizing nonstoichiometric Li3−3xV2+x(PO4)3/C as cathode materials for high-performance lithium-ion batteries by solid state reaction
固相反应合成非化学计量Li3-3xV2 x(PO4)3/C作为高性能锂离子电池正极材料
  • DOI:
    10.1039/c7ra04842d
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pingping Sun;Ningang Su;Yuanting Wang;Qingyu Xu;Qi Fan;Yueming Sun
  • 通讯作者:
    Yueming Sun

Qi Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qi Fan', 18)}}的其他基金

Manufacturing of High-Efficiency Perovskite Solar Cells via Coupled Ion Source and Magnetron Discharges
通过耦合离子源和磁控管放电制造高效钙钛矿太阳能电池
  • 批准号:
    2243110
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
FMSG: Integrating Artificial Intelligence in Chemical Vapor Deposition for In-situ Predictive Crystal Growth Manufacturing.
FMSG:将人工智能集成到化学气相沉积中,用于原位预测晶体生长制造。
  • 批准号:
    2036737
  • 财政年份:
    2020
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
PFI-TT: Developing an Efficient Computation Scheme for Modeling Low-Pressure Plasmas
PFI-TT:开发低压等离子体建模的高效计算方案
  • 批准号:
    1917577
  • 财政年份:
    2019
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Resolving Abnormal Target Erosion in High Frequency Magnetron Discharge
解决高频磁控管放电中靶材异常侵蚀问题
  • 批准号:
    1724941
  • 财政年份:
    2017
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Using Plasma Electrolysis for Efficient Manufacturing of Nanoparticles
利用等离子体电解高效制造纳米粒子
  • 批准号:
    1700787
  • 财政年份:
    2016
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Using Plasma Electrolysis for Efficient Manufacturing of Nanoparticles
利用等离子体电解高效制造纳米粒子
  • 批准号:
    1536209
  • 财政年份:
    2015
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
High-density Plasma for Efficient Manufacturing of Electronic Devices
用于电子设备高效制造的高密度等离子体
  • 批准号:
    1462389
  • 财政年份:
    2015
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
I-Corps: High-value surface modifications with nanomaterial thin films
I-Corps:利用纳米材料薄膜进行高价值表面改性
  • 批准号:
    1248454
  • 财政年份:
    2012
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant

相似国自然基金

旁轴式plasma-pulsed MIG复合焊电弧、熔滴、贯穿小孔和熔池的耦合机理
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
  • 批准号:
    11805087
  • 批准年份:
    2018
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel and efficient microwave plasma furnace for processing and syngas production
用于加工和合成气生产的新型高效微波等离子炉
  • 批准号:
    ST/Y509966/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Research Grant
Preparation of functional materials via highly efficient and sustainable sputtering system using multi pulse plasma
使用多脉冲等离子体通过高效且可持续的溅射系统制备功能材料
  • 批准号:
    23K03817
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of highly efficient near-infrared laser sustained plasma using atomic line absorption
利用原子线吸收产生高效近红外激光持续等离子体
  • 批准号:
    23H01602
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A nanosized magnetic particle system for fast and efficient neuronal extracellular vesicle enrichment from plasma
一种纳米磁性粒子系统,用于从血浆中快速有效地富集神经元细胞外囊泡
  • 批准号:
    10820640
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
SBIR Phase II: A Plasma Heat Engine for Efficient Production of Fusion Energy
SBIR 第二阶段:用于高效生产聚变能的等离子体热机
  • 批准号:
    2110396
  • 财政年份:
    2021
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: Chemically Modified, Plasma-Nanoengineered Graphene Nanopetals for Spontaneous, Self-Powered and Efficient Oil Contamination Remediation
合作研究:化学改性、等离子体纳米工程石墨烯纳米花瓣用于自发、自供电和高效的石油污染修复
  • 批准号:
    1949962
  • 财政年份:
    2020
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Efficient production of laser plasma using a porous material and its application to sensitive analysis of liquids
使用多孔材料高效产生激光等离子体及其在液体灵敏分析中的应用
  • 批准号:
    20K15314
  • 财政年份:
    2020
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Chemically Modified, Plasma-Nanoengineered Graphene Nanopetals for Spontaneous, Self-Powered and Efficient Oil Contamination Remediation
合作研究:化学改性、等离子体纳米工程石墨烯纳米花瓣用于自发、自供电和高效的石油污染修复
  • 批准号:
    1949910
  • 财政年份:
    2020
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
SBIR Phase I: A Plasma Heat Engine for Efficient Production of Fusion Energy
SBIR 第一阶段:用于高效生产聚变能的等离子体热机
  • 批准号:
    1841031
  • 财政年份:
    2019
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Development of Highly Efficient Food Sterilization Technology by Plasma-Based Ion Implantation Using Composite Gases
利用复合气体等离子体离子注入开发高效食品灭菌技术
  • 批准号:
    19K05903
  • 财政年份:
    2019
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了