Using Plasma Electrolysis for Efficient Manufacturing of Nanoparticles

利用等离子体电解高效制造纳米粒子

基本信息

  • 批准号:
    1536209
  • 负责人:
  • 金额:
    $ 33.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

Nanoparticles play a key role in a wide variety of advanced devices, including batteries, biosensors, and solar cells. The conventional means of synthesizing nanoparticles is generally inefficient and produces waste materials that are not easily recyclable. This award supports fundamental research on the chemical and physical reactions in plasma electrolysis to obtain knowledge that will enable efficient manufacture of nanoparticles. Plasma electrolysis is a glow discharge (like Neon light) in contact with liquid. The plasma is confined around an electrode by the liquid electrolyte, leading to very high energy density. This high-density plasma facilitates effective formation of nanoparticles from the working electrode. This research will benefit the scientific community by advancing knowledge about plasma physics and chemistry at liquid-gas-solid interfaces. Using cost-effective nanoparticles in photovoltaic devices and batteries will greatly promote the efficiency of clean energy generation and storage. The technologies that emerge from this research will not only promote US competitiveness in nanomaterials manufacturing, but will also ensure a sustainable economy and address global environmental concerns. This research will strengthen interdisciplinary research, education, and training in nanomaterials science and plasma physics by engaging college and high school students across South Dakota, thereby increasing the participation of underrepresented groups and expanding the pool of skilled workers.Plasma electrolysis can be a rapid and efficient process for nanoparticle manufacturing. All previous studies indicate that plasma electrolysis tends to create large particles (microns) and irregular electrode surface morphology. This has led to the conventional belief that multiple chemical and physical reactions occur simultaneously and that physical reactions dominate plasma electrolysis. Very little is known about the chemical reactions. To fill this knowledge gap and realize the full potential of plasma electrolysis for nanoparticle manufacturing, the research team will 1) establish a particle-fluid hybrid model to describe the physical and chemical reactions in plasma electrolysis; 2) use in-situ optical emission spectroscopy to verify the plasma reactions and the modeling results; 3) decouple the physical and chemical reactions to test the hypothesis that the electrolyte composition determines gas evolution (bubbles or a continuous layer), which governs discharge characteristics and the dominant plasma reactions; and 4) establish the relationships between plasma electrolysis parameters (electrolyte composition, magnetic field, and discharge power) and nanoparticle morphology.
纳米颗粒在各种先进设备中发挥着关键作用,包括电池、生物传感器和太阳能电池。合成纳米粒子的传统方法通常效率低下,而且产生的废料不易回收。该奖项支持等离子体电解中化学和物理反应的基础研究,以获得能够有效制造纳米颗粒的知识。等离子体电解是一种与液体接触的辉光放电(如霓虹灯)。等离子体被液体电解质限制在电极周围,导致非常高的能量密度。这种高密度等离子体有利于工作电极有效形成纳米颗粒。这项研究将通过推进关于液-气-固界面等离子体物理和化学的知识而使科学界受益。在光伏器件和电池中使用具有成本效益的纳米颗粒将大大提高清洁能源发电和储存的效率。从这项研究中产生的技术不仅将促进美国在纳米材料制造方面的竞争力,而且将确保可持续经济和解决全球环境问题。这项研究将通过吸引南达科他州的大学和高中学生,加强纳米材料科学和等离子体物理学的跨学科研究、教育和培训,从而增加代表性不足群体的参与,扩大技术工人的数量。等离子体电解是一种快速、高效的纳米颗粒制造方法。以往的研究表明,等离子体电解容易产生大颗粒(微米)和不规则的电极表面形貌。这导致了传统的信念,即多种化学和物理反应同时发生,物理反应主导等离子体电解。人们对化学反应所知甚少。为了填补这一知识空白,充分发挥等离子体电解制造纳米颗粒的潜力,研究团队将1)建立一个粒子-流体混合模型来描述等离子体电解中的物理和化学反应;2)利用原位发射光谱对等离子体反应和建模结果进行验证;3)解耦物理和化学反应,以验证电解质成分决定气体演化(气泡或连续层)的假设,气体演化决定放电特性和主要的等离子体反应;4)建立等离子体电解参数(电解液成分、磁场、放电功率)与纳米颗粒形貌之间的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qi Fan其他文献

Improved performance of poplar wood by an environmentally-friendly process combining surface impregnation of a reactive waterborne acrylic resin and unilateral surface densification
通过结合反应性水性丙烯酸树脂表面浸渍和单侧表面致密化的环保工艺提高杨木的性能
  • DOI:
    10.1016/j.jclepro.2020.121022
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Jiangwei Wu;Qi Fan;Qingwen Wang;Qiong Guo;Dengyun Tu;Chuanfu Chen;Yuying Xiao;Rongxian Ou
  • 通讯作者:
    Rongxian Ou
Synthesizing nonstoichiometric Li3−3xV2+x(PO4)3/C as cathode materials for high-performance lithium-ion batteries by solid state reaction
固相反应合成非化学计量Li3-3xV2 x(PO4)3/C作为高性能锂离子电池正极材料
  • DOI:
    10.1039/c7ra04842d
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pingping Sun;Ningang Su;Yuanting Wang;Qingyu Xu;Qi Fan;Yueming Sun
  • 通讯作者:
    Yueming Sun
Off-stoichiometric Li3-3xV2+x(PO4)3/C as cathode materials for high-performance lithium-ion batteries
非化学计量Li3-3xV2 x(PO4)3/C作为高性能锂离子电池正极材料
  • DOI:
    10.1016/j.jpowsour.2015.06.027
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Pingping Sun;Sai Qin;Xiuzhen Wang;Ruiyi An;Qingyu Xu;Xia Cui;Yueming Sun;Shuangbao Wang;Peng Wang;Qi Fan
  • 通讯作者:
    Qi Fan
Multiple random empirical kernel learning with margin reinforcement for imbalance problems
针对不平衡问题的带有裕度强化的多重随机经验核学习
Supporting Window Analytics over Large-scale Dynamic Graphs
支持大规模动态图的窗口分析
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qi Fan;Zhengkui Wang;C. Chan;K. Tan
  • 通讯作者:
    K. Tan

Qi Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qi Fan', 18)}}的其他基金

Manufacturing of High-Efficiency Perovskite Solar Cells via Coupled Ion Source and Magnetron Discharges
通过耦合离子源和磁控管放电制造高效钙钛矿太阳能电池
  • 批准号:
    2243110
  • 财政年份:
    2023
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Standard Grant
FMSG: Integrating Artificial Intelligence in Chemical Vapor Deposition for In-situ Predictive Crystal Growth Manufacturing.
FMSG:将人工智能集成到化学气相沉积中,用于原位预测晶体生长制造。
  • 批准号:
    2036737
  • 财政年份:
    2020
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Standard Grant
PFI-TT: Developing an Efficient Computation Scheme for Modeling Low-Pressure Plasmas
PFI-TT:开发低压等离子体建模的高效计算方案
  • 批准号:
    1917577
  • 财政年份:
    2019
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Standard Grant
Resolving Abnormal Target Erosion in High Frequency Magnetron Discharge
解决高频磁控管放电中靶材异常侵蚀问题
  • 批准号:
    1724941
  • 财政年份:
    2017
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Standard Grant
Using Plasma Electrolysis for Efficient Manufacturing of Nanoparticles
利用等离子体电解高效制造纳米粒子
  • 批准号:
    1700787
  • 财政年份:
    2016
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Standard Grant
High-density Plasma for Efficient Manufacturing of Electronic Devices
用于电子设备高效制造的高密度等离子体
  • 批准号:
    1700785
  • 财政年份:
    2016
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Standard Grant
High-density Plasma for Efficient Manufacturing of Electronic Devices
用于电子设备高效制造的高密度等离子体
  • 批准号:
    1462389
  • 财政年份:
    2015
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Standard Grant
I-Corps: High-value surface modifications with nanomaterial thin films
I-Corps:利用纳米材料薄膜进行高价值表面改性
  • 批准号:
    1248454
  • 财政年份:
    2012
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Standard Grant

相似国自然基金

旁轴式plasma-pulsed MIG复合焊电弧、熔滴、贯穿小孔和熔池的耦合机理
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
  • 批准号:
    11805087
  • 批准年份:
    2018
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Unveiling the Physics of High-Density Relativistic Pair Plasma Jets in the Laboratory
在实验室中揭示高密度相对论对等离子体射流的物理原理
  • 批准号:
    EP/Y035038/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Research Grant
PAPIER - Plasma Assisted Printing of Metal Inks with Enhanced Resistivity
PAPIER - 具有增强电阻率的金属油墨的等离子辅助印刷
  • 批准号:
    EP/Y001877/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Research Grant
Participant Support for 2024 Gordon Research Conference on Plasma Processing Science (GRC-PPS); Andover, New Hampshire; 21-26 July 2024
2024 年戈登等离子体加工科学研究会议 (GRC-PPS) 的参与者支持;
  • 批准号:
    2414674
  • 财政年份:
    2024
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Standard Grant
Plasma-safe-seqs技術を用いた乳癌再発の早期診断法の確立
利用plasma-safe-seqs技术建立乳腺癌复发早期诊断方法
  • 批准号:
    24K19341
  • 财政年份:
    2024
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Plasma-modified peptides/proteins for multi-target anticancer treatment
用于多靶点抗癌治疗的血浆修饰肽/蛋白质
  • 批准号:
    23K22483
  • 财政年份:
    2024
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Gas measurement for air plasma generators
空气等离子发生器的气体测量
  • 批准号:
    10090661
  • 财政年份:
    2024
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Collaborative R&D
Cellular Ageing: Is the Plasma Membrane the Control Hub?
细胞衰老:质膜是控制中心吗?
  • 批准号:
    DP240103193
  • 财政年份:
    2024
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Discovery Projects
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
  • 批准号:
    10112149
  • 财政年份:
    2024
  • 资助金额:
    $ 33.87万
  • 项目类别:
    EU-Funded
Novel and efficient microwave plasma furnace for processing and syngas production
用于加工和合成气生产的新型高效微波等离子炉
  • 批准号:
    ST/Y509966/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Research Grant
CAREER: From Flamelet to Full-Scale: Advancing Plasma-Assisted Combustion for Low-Emission Sustainable Fuels
职业生涯:从小火焰到全面:推进低排放可持续燃料的等离子体辅助燃烧
  • 批准号:
    2339518
  • 财政年份:
    2024
  • 资助金额:
    $ 33.87万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了