C*-Envelopes and Other Themes in Operator Algebras

C*-包络线和算子代数中的其他主题

基本信息

  • 批准号:
    2054781
  • 负责人:
  • 金额:
    $ 13.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This research project seeks to resolve various problems in operator algebra theory, an area of mathematical analysis. The general study of operator algebras began in the 1930’s in an effort to provide a mathematical formulation of particle physics and quantum mechanics, notably to model algebras of physical observables. Since then, this vibrant area of mathematics has become an independent discipline bringing valuable insight to other areas of mathematics (knot theory, dynamical systems, group theory), physics (statistical mechanics) and engineering (signal processing). The award will contribute to US workforce development through training of students at East Carolina University. There are three major areas of study in this project: the C*-envelope of an operator algebra, the structure theory of crossed products and isomorphism invariants for operator algebras. The methods employed in the study of these areas are that of Functional Analysis with a strong emphasis on modern dilation theory and representation theory of associative algebras. A particular feature of the project is the use, for the first time, of non-selfadjoint techniques in an attempt to resolve issues in the selfadjoint theory, including the Hao-Ng isomorphism problem and the description of co-universal C*-algebras for covariant representations of product systems. Conversely, this project seeks to incorporate in the toolkit of non-selfadjoint operator algebraists techniques which are standard in the selfadjoint world. For instance, classifying Arveson’s semicrossed products up to stable isomorphism relates directly to the problem of classification of crossed products via a novel use of non-selfadjoint Takai duality. Such a synergy has not been explored before and seems to open exciting possibilities for both the selfadjoint and non-selfadjoint theory of operator algebras. Towards this end, the PI intends to continue organizing seminars and workshops aimed at further facilitating collaboration between experts in these two fields while at the same time promoting the exposure of students and early-career mathematicians to this promising area of mathematics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究项目旨在解决数学分析领域算子代数理论中的各种问题。算子代数的一般研究开始于20世纪30年代,目的是为粒子物理学和量子力学提供一个数学公式,特别是为物理观测量的代数建模。从那时起,这个充满活力的数学领域已经成为一个独立的学科,为数学(纽结理论,动力系统,群论),物理(统计力学)和工程(信号处理)的其他领域带来了有价值的见解。该奖项将通过培训东卡罗莱纳大学的学生,为美国劳动力发展做出贡献。本计画主要研究三个领域:算子代数的C*-包络、交叉积的结构理论及算子代数的同构不变量。在这些领域的研究所采用的方法是,功能分析与大力强调现代膨胀理论和代表性理论的结合代数。该项目的一个特点是首次使用非自伴技术来解决自伴理论中的问题,包括Hao-Ng同构问题和乘积系统协变表示的协泛C*-代数的描述。相反,该项目旨在纳入非自伴算子代数学家技术的工具包中,这些技术在自伴世界中是标准的。例如,分类Arveson的semicrossed产品稳定同构直接涉及到问题的分类交叉产品通过一个新的使用非自伴高井对偶。这样的协同作用还没有被探索过,似乎为算子代数的自伴和非自伴理论开辟了令人兴奋的可能性。为此,PI打算继续组织研讨会和讲习班,旨在进一步促进这两个领域的专家之间的合作,同时促进学生和早期职业数学家接触这一有前途的数学领域。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Boundary quotient C*‐algebras of semigroups
半群的边界商 C*→ 代数
C*-envelopes for operator algebras with a coaction and co-universal C*-algebras for product systems
  • DOI:
    10.1016/j.aim.2022.108286
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Adam Dor-On;E. Kakariadis;E. Katsoulis;Marcelo Laca;Xin Li
  • 通讯作者:
    Adam Dor-On;E. Kakariadis;E. Katsoulis;Marcelo Laca;Xin Li
The isomorphism problem for tensor algebras of multivariable dynamical systems
多变量动力系统张量代数的同构问题
  • DOI:
    10.1017/fms.2022.73
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Katsoulis, Elias G.;Ramsey, Christopher
  • 通讯作者:
    Ramsey, Christopher
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elias Katsoulis其他文献

Elias Katsoulis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

腊状芽胞杆菌ATCC 14579中赖氨酰tRNA合成酶I(LysRS1)和tRNA-Other的生理功能研究
  • 批准号:
    30770034
  • 批准年份:
    2007
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
  • 批准号:
    DP240101473
  • 财政年份:
    2024
  • 资助金额:
    $ 13.44万
  • 项目类别:
    Discovery Projects
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
  • 批准号:
    2348475
  • 财政年份:
    2024
  • 资助金额:
    $ 13.44万
  • 项目类别:
    Standard Grant
Self-centred vs. other-centred homeostatic plasticity in inhibitory interneurons
抑制性中间神经元中以自我为中心与以他人为中心的稳态可塑性
  • 批准号:
    BB/X014568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.44万
  • 项目类别:
    Research Grant
Perceptions, practices, autonomy levels and other variations among teachers who use AI teaching tools
使用人工智能教学工具的教师的认知、实践、自主水平和其他差异
  • 批准号:
    24K16628
  • 财政年份:
    2024
  • 资助金额:
    $ 13.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Other Rome: Centring People and Spaces of Maintenance
另一个罗马:以人员和维护空间为中心
  • 批准号:
    AH/Y000277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.44万
  • 项目类别:
    Fellowship
ERI: System Tautochronic Pendulum Vibration Absorbers for Next-Generation Propulsion Systems and Other Machinery
ERI:用于下一代推进系统和其他机械的系统等时摆减震器
  • 批准号:
    2347632
  • 财政年份:
    2024
  • 资助金额:
    $ 13.44万
  • 项目类别:
    Standard Grant
Removing the Disparity in Success-Related Outcomes Between Academically Talented Low-Income Engineering Students and Other Engineering Students
消除有学术才华的低收入工科学生与其他工科学生之间在成功相关成果上的差距
  • 批准号:
    2322584
  • 财政年份:
    2024
  • 资助金额:
    $ 13.44万
  • 项目类别:
    Standard Grant
CBOIAO: Constructing the 'Barbarian Other' in Attic Oratory of the Fourth Century B.C.E.
CBIOIAO:在公元前四世纪的阁楼演讲中构建“野蛮的他者”
  • 批准号:
    EP/Y025172/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.44万
  • 项目类别:
    Fellowship
Growing Prosperity through Financial Inclusion: “FinBridge” - Fintech Data to Bridge the Trust-Gap between Mainstream Financial Service Providers and Diaspora Communities in the UK and other Financially Underserved Minorities
通过金融包容性促进繁荣:“FinBridge” - 金融科技数据弥合主流金融服务提供商与英国侨民社区和其他金融服务不足的少数群体之间的信任差距
  • 批准号:
    10095550
  • 财政年份:
    2024
  • 资助金额:
    $ 13.44万
  • 项目类别:
    Collaborative R&D
Vulnerability & The Other Non-Human Animal: a Phenomenological Approach to Animal Ethics
漏洞
  • 批准号:
    2906707
  • 财政年份:
    2024
  • 资助金额:
    $ 13.44万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了