OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons

OP:量子光物质与范德华激子极化子的相互作用

基本信息

  • 批准号:
    2103673
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Non-technical description: Quantum Information Science and Technologies can revolutionize modern society: by enabling extremely fast computing and ultra-secure communication, to unlocking new materials, such as high-temperature superconductors, that can transform day-to-day transportation, or create new chemical processes transforming agriculture. Light is an advantageous choice for building quantum technology, as it is easy to control and detect single packets of light, also known as photons. Unfortunately, photons do not easily interact with each other, which poses a serious bottleneck for controlling one stream of photons with another. The ability to control a signal is at the heart of any computing technology. Hence, current attempts to build quantum computer using light is limited to only simple operation. Developing more complex interaction between photons can dramatically enhance the computer’s capability. This project aims to demonstrate precisely such interactions between photons mediated by electrons. The key technology has two components: a device to store light in a small volume for a long time, and an artificial atom-like medium, also known as an exciton. Such medium is already at the heart of many day-to-day technologies, including solar cells, and light emitting diodes. Integrating such atom-like medium with light-storing devices leads to strong interaction between photons. On the nanometer scale, this effect can happen at the single photon level, which is needed for quantum computing. Moreover, the large size reduction of the light-storing devices allows hundreds of them to be made on a single square-millimeter chip, allowing integrated circuits for light, akin to integrated circuits that are at the heart of today’s electronics. This project will develop a platform to help scientists better understand effects like high-temperature superconductivity. Furthermore, this project will improve the training and education of undergraduate and high school students, with a strong emphasis on including women and minority communities, in scientific research in quantum technologies. Through the PI’s active involvement with the Optical Society of America and industrial laboratories, the scientific results will be disseminated to a wider scientific audience via seminars, workshops, peer-reviewed publications, and conferences. Technical description: The research aims to develop a quantum optical platform to understand and engineer light matter interaction at the most fundamental level, where single photons start interacting with each other via single quanta of materials known as excitons. This platform is made of strongly coupled hybrid particles called exciton-polaritons, which are part-matter and part-light, and thus inherit the best of both worlds. While photons provide the ability to couple spatially separated nodes, the excitons provide the ability for the polaritons to interact with each other. The key to creating this strongly interacting exciton-polariton system is the merging of atomically thin van der Waals materials, such as transition metal dichalcogenides with an extremely large exciton binding energy, and ultra-small mode-volume nanophotonic resonators and resonator arrays. Combining optical and electrical techniques as well as quantum optical modelling, the project probes coherent light matter interaction in van der Waals materials to provide deep insights into the nature of atomically thin exciton-polaritons, and polariton condensates. The ability to control polaritons provides an excellent opportunity to synthesize complex quantum Hamiltonians, which are impossible to solve using classical computers. The resulting strongly correlated two-dimensional polariton may prove critical for new capabilities in quantum nanophotonic technologies that exploit the spin-valley physics or generate new physics, such as exciton-mediated superconductivity. Combining numerical simulation, device fabrication, and optical characterization, three research aims are pursued: (1) develop a robust exciton-polariton platform; (2) realize single photon nonlinear optics for quantum many-body simulations; and (3) explore new states of quantum materials using exciton-polaritons.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性说明:量子信息科学和技术可以彻底改变现代社会:通过实现极快的计算和超安全的通信,解锁新材料,如高温超导体,可以改变日常运输,或创造新的化学过程改变农业。光是构建量子技术的有利选择,因为它很容易控制和检测单个光包,也称为光子。不幸的是,光子不容易相互作用,这对控制一个光子流与另一个光子流构成了严重的瓶颈。控制信号的能力是任何计算技术的核心。因此,目前利用光构建量子计算机的尝试仅限于简单的操作。开发光子之间更复杂的相互作用可以大大增强计算机的能力。该项目旨在精确地展示由电子介导的光子之间的这种相互作用。这项关键技术有两个组成部分:一个是将光长时间存储在小体积中的装置,另一个是人造的类原子介质,也被称为激子。这种介质已经成为许多日常技术的核心,包括太阳能电池和发光二极管。将这种类似原子的介质与光存储设备集成会导致光子之间的强烈相互作用。在纳米尺度上,这种效应可以发生在单光子水平上,这是量子计算所需要的。此外,光存储设备的大尺寸减小允许在单个平方毫米的芯片上制造数百个光存储设备,从而允许光集成电路,类似于当今电子产品的核心集成电路。该项目将开发一个平台,帮助科学家更好地了解高温超导等效应。此外,该项目将改善本科生和高中生的培训和教育,特别强调将妇女和少数民族社区纳入量子技术的科学研究。通过PI与美国光学学会和工业实验室的积极参与,科学成果将通过研讨会,讲习班,同行评审的出版物和会议传播给更广泛的科学受众。 技术说明:该研究旨在开发一个量子光学平台,以理解和设计最基本水平的光物质相互作用,其中单个光子通过称为激子的单量子材料开始相互作用。这个平台由强耦合的混合粒子组成,称为激子-极化激元,它们是部分物质和部分光,因此继承了两个世界的优点。虽然光子提供了耦合空间上分离的节点的能力,但激子提供了极化激元彼此相互作用的能力。创建这种强相互作用激子-极化激元系统的关键是原子级薄的货车范德华材料(例如具有极大激子结合能的过渡金属二硫属化物)与超小模式体积纳米光子谐振器和谐振器阵列的合并。结合光学和电学技术以及量子光学建模,该项目探讨了货车德瓦尔斯材料中的相干光物质相互作用,以深入了解原子薄激子-极化激元和极化激元凝聚物的性质。控制极化激元的能力提供了一个很好的机会来合成复杂的量子哈密顿,这是不可能解决使用经典计算机。由此产生的强相关二维极化激元可能对量子纳米光子技术的新功能至关重要,这些技术利用自旋谷物理或产生新的物理,如激子介导的超导性。结合数值模拟、器件制作和光学表征,实现三个研究目标:(1)开发一个强大的激子-极化子平台;(2)实现量子多体模拟的单光子非线性光学;(3)利用激子探索量子材料的新态-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Waveguide-Integrated van der Waals Heterostructure Mid-Infrared Photodetector with High Performance
  • DOI:
    10.1021/acsami.2c01094
  • 发表时间:
    2022-04-27
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Chen, Po-Liang;Chen, Yueyang;Liu, Chang-Hua
  • 通讯作者:
    Liu, Chang-Hua
Visible Wavelength Flatband in a Gallium Phosphide Metasurface
  • DOI:
    10.1021/acsphotonics.3c00175
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Christopher Munley;Arnab Manna;David Sharp;Minho Choi;Hao A. Nguyen;B. Cossairt;Mo Li;A. Barnard;A. Majumdar
  • 通讯作者:
    Christopher Munley;Arnab Manna;David Sharp;Minho Choi;Hao A. Nguyen;B. Cossairt;Mo Li;A. Barnard;A. Majumdar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arka Majumdar其他文献

Full color Imaging with Large-Aperture Meta-Optics
使用大孔径超光学器件进行全彩色成像
Full color visible imaging with crystalline silicon meta-optics
基于晶体硅超构表面的全彩可见光成像
  • DOI:
    10.1038/s41377-025-01888-w
  • 发表时间:
    2025-06-18
  • 期刊:
  • 影响因子:
    23.400
  • 作者:
    Johannes E. Fröch;Luocheng Huang;Zhihao Zhou;Virat Tara;Zhuoran Fang;Shane Colburn;Alan Zhan;Minho Choi;Arnab Manna;Andrew Tang;Zheyi Han;Karl F. Böhringer;Arka Majumdar
  • 通讯作者:
    Arka Majumdar
Strain-tunable emission from single photon emitters in a Hexagonal Boron Nitride Metasurface
六方氮化硼超表面中单光子发射器的应变可调发射
Low-loss multilevel operation using lossy phase-change material-integrated silicon photonics
使用有损相变材料集成硅光子学进行低损耗多级操作
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Rui Chen;Virat Tara;Jayita Dutta;Zhuoran Fang;Jiajiu Zheng;Arka Majumdar
  • 通讯作者:
    Arka Majumdar
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
超低功率光纤耦合砷化镓光子晶体腔电光调制器。
  • DOI:
    10.1364/oe.19.007530
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    G. Shambat;B. Ellis;M. Mayer;Arka Majumdar;E. E. Haller;J. Vučković
  • 通讯作者:
    J. Vučković

Arka Majumdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arka Majumdar', 18)}}的其他基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329089
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
EFRI BRAID: Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation
EFRI BRAID:用于预测性和适应性大脑恢复和增强的光学神经协处理器
  • 批准号:
    2223495
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127235
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
GCR: Meta-Optical Angioscopes for Image-Guided Therapies in Previously Inaccessible Locations
GCR:元光学血管镜,用于在以前无法到达的位置进行图像引导治疗
  • 批准号:
    2120774
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
OP: Spatial Light Modulation using Reconfigurable Phase Change Material Metasurfaces
OP:使用可重构相变材料超表面进行空间光调制
  • 批准号:
    2003509
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: Van der Waals material integrated ultra-low power nanophotonics
职业:范德华材料集成超低功耗纳米光子学
  • 批准号:
    1845009
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
QII-TAQS: Strongly Interacting Photons in Coupled Cavity Arrays: A Platform for Quantum Many-Body Simulation
QII-TAQS:耦合腔阵列中的强相互作用光子:量子多体模拟平台
  • 批准号:
    1936100
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
QLC: EAGER: Quantum Simulation Using Solution Processed Quantum Dots Coupled to Nano-cavities
QLC:EAGER:使用溶液处理的量子点耦合到纳米腔进行量子模拟
  • 批准号:
    1836500
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
OP: Electrically Controlled Solid-State Cavity QED with Single Emitters in Monolayer Material
OP:单层材料中具有单发射极的电控固态腔 QED
  • 批准号:
    1708579
  • 财政年份:
    2017
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Telecom wavelength high-repetition-rate quantum light source
电信波长高重复率量子光源
  • 批准号:
    10088290
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Collaborative R&D
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
  • 批准号:
    2335283
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
  • 批准号:
    2347622
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/2
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
Light-matter interaction in quantum materials
量子材料中的光与物质相互作用
  • 批准号:
    2904757
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Studentship
ERI: Development of light-emitting devices having intensive quantum-optical properties using a low-dimensional semiconducting material
ERI:使用低维半导体材料开发具有强量子光学特性的发光器件
  • 批准号:
    2301580
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Quantum Imaging with Squeezed Light
压缩光量子成像
  • 批准号:
    2883962
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Studentship
Probing the Quantum Vacuum with High Power Laser and 4th Generation Light Sources in the Search for New Physics
用高功率激光和第四代光源探测量子真空,寻找新物理
  • 批准号:
    EP/X01133X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
Study on light-field-driven dynamics for ultrafast control of quantum states of matter
用于物质量子态超快控制的光场驱动动力学研究
  • 批准号:
    23K13052
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了