QLC: EAGER: Quantum Simulation Using Solution Processed Quantum Dots Coupled to Nano-cavities

QLC:EAGER:使用溶液处理的量子点耦合到纳米腔进行量子模拟

基本信息

  • 批准号:
    1836500
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Quantum technologies can revolutionize modern information systems by enabling faster computing and secured communication. Such technologies can be realized by exploiting the quantum nature of light, namely, photons. Unfortunately, photons do not interact with each other on their own, which prevents their direct application for quantum information processing. With support from the Macromolecular, Supramolecular and Nanochemistry program in the Division of Chemistry, Professors Arka Majumdar and Brandi Cossairt from the University of Washington are designing nanoscale optical structures that can store light for a long time while simultaneously confining it to a small volume. It is like focusing sun-light with a magnifying glass, but on the nanometer scale, the effect happens at a single photon level. Integrating nanoparticles with these optical nanostructures leads to a strong interaction between the photons. When photons are made to influence one another, they can then be used to distribute quantum information in a variety of useful ways. Discoveries from this project are advancing our understanding of how light interacts with matter, as well as leading to new, one-of-a-kind platforms for quantum technologies. Furthermore, the project is providing training and education in quantum technologies for graduate, undergraduate and high school students, with a strong emphasis on including women and students from underrepresented minorities groups. Nano-optical resonators can enhance the light-matter interaction via spatial and temporal confinement of light. The integration of a single quantum dot with such a resonator can lead to the strong coupling regime, where individual photons repel each other in an effect known as photon blockade. Such strong interactions are necessary for simulating the complicated behavior of electrons in real materials and other strongly correlated quantum many-body systems. However, deterministic positioning of single quantum dots is a very difficult task, and to date remains unsolved. To address this problem, the team is using solution-processed colloidal quantum dots in conjunction with lithographically defined windows on each nano-resonator. Combining numerical simulations, new synthesis chemistry, and optical characterization, three research thrusts are pursued: (i) Synthesis of quantum dots with large physical size; (ii) Size-selective integration of quantum dots with nano-resonators and measurement of quantum optical properties; (iii) Optical spectroscopy and photon correlation measurements in a nonlinear cavity array. The proposed research is built upon the PI's prior work on solution processed quantum dots, cavity quantum electrodynamics, and single photon nonlinear optics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子技术可以实现更快的计算和安全的通信,从而彻底改变现代信息系统。这种技术可以通过利用光的量子特性,即光子来实现。不幸的是,光子本身并不相互作用,这阻碍了它们在量子信息处理中的直接应用。在化学系大分子、超分子和纳米化学项目的支持下,华盛顿大学的Arka Majumdar教授和Brandi Cossairt教授正在设计纳米级光学结构,该结构可以长时间存储光,同时将其限制在小体积内。这就像用放大镜聚焦太阳光一样,但在纳米尺度上,这种效果发生在单光子水平上。将纳米粒子与这些光学纳米结构结合在一起会导致光子之间的强相互作用。当光子相互影响时,它们就可以用各种有用的方式来分发量子信息。这个项目的发现促进了我们对光与物质相互作用的理解,也为量子技术带来了新的、独一无二的平台。此外,该项目正在为研究生、本科生和高中生提供量子技术方面的培训和教育,重点是包括妇女和来自代表性不足的少数群体的学生。纳米光学谐振器可以通过光的空间和时间限制来增强光与物质的相互作用。单个量子点与这样的谐振器的集成可以导致强耦合状态,其中单个光子在称为光子封锁的效应中相互排斥。这种强相互作用对于模拟真实材料和其他强相关量子多体系统中电子的复杂行为是必要的。然而,单量子点的确定定位是一项非常困难的任务,至今仍未得到解决。为了解决这个问题,该团队正在使用溶液处理的胶体量子点与每个纳米谐振器上的光刻定义窗口相结合。结合数值模拟、新型合成化学和光学表征,开展了三大研究重点:(1)大物理尺寸量子点的合成;(ii)量子点与纳米谐振器的尺寸选择集成和量子光学特性的测量;(三)非线性空腔阵列的光谱学和光子相关测量。提出的研究是建立在PI先前在溶液处理量子点,腔量子电动力学和单光子非线性光学方面的工作基础上的。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Seeded Growth of Nanoscale Semiconductor Tetrapods: Generality and the Role of Cation Exchange
  • DOI:
    10.1021/acs.chemmater.0c01407
  • 发表时间:
    2020-06-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Enright, Michael J.;Dou, Florence Y.;Cossairt, Brandi M.
  • 通讯作者:
    Cossairt, Brandi M.
Improving Indistinguishability of Single Photons from Colloidal Quantum Dots Using Nanocavities
  • DOI:
    10.1021/acsphotonics.9b01481
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Saxena, Abhi;Chen, Yueyang;Majumdar, Arka
  • 通讯作者:
    Majumdar, Arka
Deterministic Positioning of Colloidal Quantum Dots on Silicon Nitride Nanobeam Cavities
  • DOI:
    10.1021/acs.nanolett.8b02764
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Chen, Yueyang;Ryou, Albert;Majumdar, Arka
  • 通讯作者:
    Majumdar, Arka
Nonvolatile Rewritable Photomemory Arrays Based on Reversible Phase‐Change Perovskite for Optical Information Storage
  • DOI:
    10.1002/adom.201900558
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Chen Zou;Jiajiu Zheng;Cheng Chang;A. Majumdar;Lih Y. Lin
  • 通讯作者:
    Chen Zou;Jiajiu Zheng;Cheng Chang;A. Majumdar;Lih Y. Lin
Silicon nitride nanobeam enhanced emission from all-inorganic perovskite nanocrystals
  • DOI:
    10.1364/oe.27.018673
  • 发表时间:
    2019-06-24
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Fong, Chee Fai;Yin, Yin;Xiong, Qihua
  • 通讯作者:
    Xiong, Qihua
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arka Majumdar其他文献

Full color Imaging with Large-Aperture Meta-Optics
使用大孔径超光学器件进行全彩色成像
Full color visible imaging with crystalline silicon meta-optics
基于晶体硅超构表面的全彩可见光成像
  • DOI:
    10.1038/s41377-025-01888-w
  • 发表时间:
    2025-06-18
  • 期刊:
  • 影响因子:
    23.400
  • 作者:
    Johannes E. Fröch;Luocheng Huang;Zhihao Zhou;Virat Tara;Zhuoran Fang;Shane Colburn;Alan Zhan;Minho Choi;Arnab Manna;Andrew Tang;Zheyi Han;Karl F. Böhringer;Arka Majumdar
  • 通讯作者:
    Arka Majumdar
Strain-tunable emission from single photon emitters in a Hexagonal Boron Nitride Metasurface
六方氮化硼超表面中单光子发射器的应变可调发射
Low-loss multilevel operation using lossy phase-change material-integrated silicon photonics
使用有损相变材料集成硅光子学进行低损耗多级操作
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Rui Chen;Virat Tara;Jayita Dutta;Zhuoran Fang;Jiajiu Zheng;Arka Majumdar
  • 通讯作者:
    Arka Majumdar
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
超低功率光纤耦合砷化镓光子晶体腔电光调制器。
  • DOI:
    10.1364/oe.19.007530
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    G. Shambat;B. Ellis;M. Mayer;Arka Majumdar;E. E. Haller;J. Vučković
  • 通讯作者:
    J. Vučković

Arka Majumdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arka Majumdar', 18)}}的其他基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329089
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
EFRI BRAID: Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation
EFRI BRAID:用于预测性和适应性大脑恢复和增强的光学神经协处理器
  • 批准号:
    2223495
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127235
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons
OP:量子光物质与范德华激子极化子的相互作用
  • 批准号:
    2103673
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
GCR: Meta-Optical Angioscopes for Image-Guided Therapies in Previously Inaccessible Locations
GCR:元光学血管镜,用于在以前无法到达的位置进行图像引导治疗
  • 批准号:
    2120774
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
OP: Spatial Light Modulation using Reconfigurable Phase Change Material Metasurfaces
OP:使用可重构相变材料超表面进行空间光调制
  • 批准号:
    2003509
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Van der Waals material integrated ultra-low power nanophotonics
职业:范德华材料集成超低功耗纳米光子学
  • 批准号:
    1845009
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
QII-TAQS: Strongly Interacting Photons in Coupled Cavity Arrays: A Platform for Quantum Many-Body Simulation
QII-TAQS:耦合腔阵列中的强相互作用光子:量子多体模拟平台
  • 批准号:
    1936100
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
OP: Electrically Controlled Solid-State Cavity QED with Single Emitters in Monolayer Material
OP:单层材料中具有单发射极的电控固态腔 QED
  • 批准号:
    1708579
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

QLC: EAGER: Collaborative Research: Dissecting many-body correlations in matter by quantum process tomography
QLC:EAGER:协作研究:通过量子过程断层扫描剖析物质中的多体相关性
  • 批准号:
    1836080
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
QLC: EAGER: COLLABORATIVE RESEARCH: Cavity-Enhanced Strategies to Protect and Entangle Quantum Emitters
QLC:EAGER:协作研究:保护和纠缠量子发射器的腔增强策略
  • 批准号:
    1836482
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
QLC: EAGER: COLLABORATIVE RESEARCH: Cavity-Enhanced Strategies to Protect and Entangle Quantum Emitters
QLC:EAGER:协作研究:保护和纠缠量子发射器的腔增强策略
  • 批准号:
    1836506
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
QLC: EAGER: New Chemical Reactivity Enabled by Cavity Quantum Electrodynamics
QLC:EAGER:腔量子电动力学实现的新化学反应性
  • 批准号:
    1836546
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
QLC: EAGER: Collaborative Research: Dissecting many-body correlations in matter by quantum process tomography
QLC:EAGER:协作研究:通过量子过程断层扫描剖析物质中的多体相关性
  • 批准号:
    1836075
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
QLC: EAGER: Control of Quantum Dynamics and Catalysis Using Molecular Polaritonics
QLC:EAGER:利用分子极化学控制量子动力学和催化
  • 批准号:
    1836529
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
QLC: EAGER: Quantum control of energy transfer pathways and chemical reactions
QLC:EAGER:能量转移途径和化学反应的量子控制
  • 批准号:
    1836498
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
QLC: EAGER: Study of the hydrocarbon quantum formation process with carbon 12 and carbon 13 and optical control
QLC:EAGER:碳12和碳13碳氢化合物量子形成过程及光控制研究
  • 批准号:
    1836540
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
QLC: EAGER: Collaborative Research: New Design for Quantum Chemistry Calculations on Emerging Quantum Computers
QLC:EAGER:协作研究:新兴量子计算机上量子化学计算的新设计
  • 批准号:
    1836530
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
QLC: EAGER: Collaborative Research: New Design for Quantum Chemistry Calculations on Emerging Quantum Computers
QLC:EAGER:协作研究:新兴量子计算机上量子化学计算的新设计
  • 批准号:
    1836497
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了