QII-TAQS: Strongly Interacting Photons in Coupled Cavity Arrays: A Platform for Quantum Many-Body Simulation
QII-TAQS:耦合腔阵列中的强相互作用光子:量子多体模拟平台
基本信息
- 批准号:1936100
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum technologies can revolutionize modern society, from enabling extremely fast computation and ultra-secure communication to unlocking new materials, such as high-temperature superconductors, that can transform day-to-day transportation, medical imaging, and electrical power delivery. Among many physical systems that strive to implement these technologies, light provides a significant advantage. It is easy to control and detect the single quanta of light called photons. Unfortunately, photons do not readily interact with each other, which poses a serious bottleneck for developing quantum photonic technologies. Moreover, unlike electronics, optical systems tend to be bulkier, and thus present significant limitations on scalability. This project aims to design quantum photonic integrated circuits that address these challenges. Carefully-engineered integrated photonic structures, also known as resonators, can store light in a microscopic volume for a long time. Integrating nanoparticles with these resonators can lead to a strong interaction between the light and nanoparticles, which subsequently mediates interaction between photons. Moreover, such integration allows a large size reduction, enabling hundreds of resonators to be made on a single square-millimeter chip. By coaxing individual photons to interact with one other within an array of resonators, a quantum network can be realized that can process quantum information. This project aims to develop a one-of-a-kind platform for quantum technologies that can potentially help scientists better understand effects like high-temperature superconductivity. Furthermore, the project aims to improve the training and education of undergraduate and high school students, with a strong emphasis on including women and minority communities, in scientific research in quantum technologies. Scalability remains a daunting problem for many quantum technologies. Unfortunately, it is virtually impossible to assemble node arrays with single atoms and solid-state defects, which, despite their significant contributions to fundamental quantum science, are not scalable. The field of quantum simulations thus stands to benefit enormously from a new, disruptive experimental platform. To that end, this project aims to marry two emerging fields, namely, solution-processed quantum dots and nanophotonic resonator arrays, to produce a scalable, multi-node quantum system. Nanophotonic resonators can enhance light-matter interaction via the spatial and temporal confinement of light. By deterministically integrating a single solution-processed quantum dot with such a resonator, strong repulsive interactions between photons can be realized. This interaction is necessary for simulating the complicated behavior of electrons in real materials and other strongly correlated quantum many-body systems. Coupling several of such quantum nonlinear resonators is key to engineering all-optical analogs of Hamiltonians of different quantum systems, which are intractable with any classical computer today. Combining modeling and simulation, new synthetic chemistry, and optical characterization, three research thrusts will be pursued under this project: (i) Simulate quantum Hamiltonians using a linear resonator array; (ii) Demonstrate single photon nonlinearity in each resonator; (iii) Perform non-equilibrium quantum simulations with interacting photons. The research builds upon the three investigators' prior work on solution processed quantum materials, design and fabrication of nanophotonic resonators, cavity quantum electrodynamics, and quantum simulations.This project is jointly funded by Quantum Leap Big Idea Program, the Division of Chemistry in the Mathematical and Physical Sciences Directorate, and the Division of Electrical, Communications, and Cyber Systems in the Engineering Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子技术可以彻底改变现代社会,从实现极快的计算和超安全通信到解锁新材料,例如高温超导体,这些材料可以改变日常运输,医疗成像和电力传递。在许多努力实施这些技术的物理系统中,光提供了重要的优势。它很容易控制和检测单一的量子,称为光子。不幸的是,光子不容易相互作用,这为开发量子光子技术带来了严重的瓶颈。此外,与电子产品不同,光学系统往往更笨重,因此对可伸缩性产生了重大限制。该项目旨在设计解决这些挑战的量子光电集成电路。精心设计的集成光子结构(也称为谐振器)可以长时间存储在微观体积中。将纳米颗粒与这些谐振器整合在一起可以导致光和纳米颗粒之间的强烈相互作用,从而介导光子之间的相互作用。此外,这种集成允许大大减少,从而使数百个谐振器可以在单平方米芯片上进行。通过哄骗单个光子在一个谐振器数组中与一个相互作用,可以实现可以处理量子信息的量子网络。该项目旨在为量子技术开发一种一种一种,可以帮助科学家更好地理解诸如高温超导性等效果。此外,该项目旨在改善本科和高中生的培训和教育,并强烈着重于包括妇女和少数民族社区在量子技术的科学研究中。 对于许多量子技术来说,可伸缩性仍然是一个艰巨的问题。不幸的是,几乎不可能用单个原子和固态缺陷组装节点阵列,尽管它们对基本量子科学的重要贡献是不可扩展的。因此,量子模拟的领域可从新的,破坏性的实验平台中受益匪浅。为此,该项目旨在嫁给两个新兴领域,即解决方案处理的量子点和纳米光子谐振器阵列,以产生可扩展的多节点量子系统。纳米光谐振器可以通过光的空间和时间限制来增强光 - 谐音的相互作用。通过确定性地将单个溶液处理的量子点与这种谐振器整合在一起,可以实现光子之间的强烈排斥相互作用。这种相互作用对于模拟电子中电子的复杂行为和其他密切相关的量子多体系统是必不可少的。耦合了几个这样的量子非线性谐振器是工程化汉密尔顿不同量子系统的全光类似物的关键,这些量子系统与当今的任何经典计算机都很棘手。结合建模和模拟,新的合成化学和光学表征,将在此项目下进行三个研究推力:(i)使用线性谐振器阵列模拟量子汉密尔顿人; (ii)在每个谐振器中证明单个光子非线性; (iii)与相互作用的光子进行非平衡量子模拟。 The research builds upon the three investigators' prior work on solution processed quantum materials, design and fabrication of nanophotonic resonators, cavity quantum electrodynamics, and quantum simulations.This project is jointly funded by Quantum Leap Big Idea Program, the Division of Chemistry in the Mathematical and Physical Sciences Directorate, and the Division of Electrical, Communications, and Cyber Systems in the Engineering Directorate.This award reflects NSF's statutory mission and使用基金会的知识分子优点和更广泛的审查标准,通过评估被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Active Tuning of Hybridized Modes in a Heterogeneous Photonic Molecule
- DOI:10.1103/physrevapplied.13.044041
- 发表时间:2019-12
- 期刊:
- 影响因子:4.6
- 作者:Kevin C. Smith;Yueyang Chen;A. Majumdar;D. Masiello
- 通讯作者:Kevin C. Smith;Yueyang Chen;A. Majumdar;D. Masiello
Predicting Indium Phosphide Quantum Dot Properties from Synthetic Procedures Using Machine Learning
使用机器学习从合成过程预测磷化铟量子点特性
- DOI:10.1021/acs.chemmater.2c00640
- 发表时间:2022
- 期刊:
- 影响因子:8.6
- 作者:Nguyen, Hao A.;Dou, Florence Y.;Park, Nayon;Wu, Shenwei;Sarsito, Harrison;Diakubama, Benedicte;Larson, Helen;Nishiwaki, Emily;Homer, Micaela;Cash, Melanie
- 通讯作者:Cash, Melanie
Nanometer-Scale Spatial and Spectral Mapping of Exciton Polaritons in Structured Plasmonic Cavities
- DOI:10.1103/physrevlett.128.197401
- 发表时间:2022-05-12
- 期刊:
- 影响因子:8.6
- 作者:Bourgeois, Marc R.;Beutler, Elliot K.;Masiello, David J.
- 通讯作者:Masiello, David J.
Exact k -body representation of the Jaynes-Cummings interaction in the dressed basis: Insight into many-body phenomena with light
- DOI:10.1103/physreva.104.013707
- 发表时间:2021-03
- 期刊:
- 影响因子:2.9
- 作者:Kevin C. Smith;A. Bhattacharya;D. Masiello
- 通讯作者:Kevin C. Smith;A. Bhattacharya;D. Masiello
Nanoscale Characterization of Individual Three-Dimensional Split Ring Resonator Systems
- DOI:10.1021/acsaom.2c00157
- 发表时间:2023-01-01
- 期刊:
- 影响因子:0
- 作者:Anyanwu, C. Praise;Pakeltis, Grace;Masiello, David J.
- 通讯作者:Masiello, David J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arka Majumdar其他文献
Full color Imaging with Large-Aperture Meta-Optics
使用大孔径超光学器件进行全彩色成像
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Arka Majumdar - 通讯作者:
Arka Majumdar
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
超低功率光纤耦合砷化镓光子晶体腔电光调制器。
- DOI:
10.1364/oe.19.007530 - 发表时间:
2011 - 期刊:
- 影响因子:3.8
- 作者:
G. Shambat;B. Ellis;M. Mayer;Arka Majumdar;E. E. Haller;J. Vučković - 通讯作者:
J. Vučković
Compressed Meta-Optical Encoder for Image Classification
用于图像分类的压缩元光学编码器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
A. Wirth;Jinlin Xiang;Minho Choi;Johannes E. Froch;Luocheng Huang;S. Colburn;Eli Shlizerman;Arka Majumdar - 通讯作者:
Arka Majumdar
Accelerating discovery of tunable optical materials (ATOM)
加速可调谐光学材料 (ATOM) 的发现
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Trish Veeder;Arash Dehzangi;Shriram Ramanathan;Mikhail Kats;Nanfang Yu;Juejun Hu;Christopher Roberts;Mark Polking;Kevin Tibbetts;Arka Majumdar;Marina S. Leite;H. Homayoun;J. Munday;K. K. Son - 通讯作者:
K. K. Son
Wide Field of View Large Aperture Meta-Doublet Eyepiece
宽视场大口径超双目镜
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
A. Wirth;Johannes E. Froch;Fan Yang;Louis Martin;Hualiang Zhang;Quentin T. Tanguy;Zhihao Zhou;Luocheng Huang;Demis D. John;Biljana Stamenic;Juejun Hu;Tian Gu;Arka Majumdar - 通讯作者:
Arka Majumdar
Arka Majumdar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arka Majumdar', 18)}}的其他基金
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
- 批准号:
2344659 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329089 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
EFRI BRAID: Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation
EFRI BRAID:用于预测性和适应性大脑恢复和增强的光学神经协处理器
- 批准号:
2223495 - 财政年份:2022
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127235 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons
OP:量子光物质与范德华激子极化子的相互作用
- 批准号:
2103673 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
GCR: Meta-Optical Angioscopes for Image-Guided Therapies in Previously Inaccessible Locations
GCR:元光学血管镜,用于在以前无法到达的位置进行图像引导治疗
- 批准号:
2120774 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
OP: Spatial Light Modulation using Reconfigurable Phase Change Material Metasurfaces
OP:使用可重构相变材料超表面进行空间光调制
- 批准号:
2003509 - 财政年份:2020
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CAREER: Van der Waals material integrated ultra-low power nanophotonics
职业:范德华材料集成超低功耗纳米光子学
- 批准号:
1845009 - 财政年份:2019
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QLC: EAGER: Quantum Simulation Using Solution Processed Quantum Dots Coupled to Nano-cavities
QLC:EAGER:使用溶液处理的量子点耦合到纳米腔进行量子模拟
- 批准号:
1836500 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
OP: Electrically Controlled Solid-State Cavity QED with Single Emitters in Monolayer Material
OP:单层材料中具有单发射极的电控固态腔 QED
- 批准号:
1708579 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似国自然基金
塔里木北缘库鲁克塔格地区志留—泥盆纪变质—变形作用及其构造意义
- 批准号:42372240
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
热液流体对白云岩孔隙的差异改造:以塔北南斜坡上震旦统奇格布拉克组为例
- 批准号:42272154
- 批准年份:2022
- 资助金额:57 万元
- 项目类别:面上项目
库鲁克塔格地区下寒武统西大山组黑色页岩的钼同位素特征及其对古海洋环境的指示意义
- 批准号:41903018
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
新疆库鲁克塔格地区古元古代深熔混合岩变质作用P-T-t轨迹及其对碰撞造山过程的约束
- 批准号:41762015
- 批准年份:2017
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
北阿尔金地区阿克塔什塔格杂岩的岩石组合、形成时代及相关构造-岩浆事件
- 批准号:41672186
- 批准年份:2016
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant