QII-TAQS: Strongly Interacting Photons in Coupled Cavity Arrays: A Platform for Quantum Many-Body Simulation

QII-TAQS:耦合腔阵列中的强相互作用光子:量子多体模拟平台

基本信息

  • 批准号:
    1936100
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Quantum technologies can revolutionize modern society, from enabling extremely fast computation and ultra-secure communication to unlocking new materials, such as high-temperature superconductors, that can transform day-to-day transportation, medical imaging, and electrical power delivery. Among many physical systems that strive to implement these technologies, light provides a significant advantage. It is easy to control and detect the single quanta of light called photons. Unfortunately, photons do not readily interact with each other, which poses a serious bottleneck for developing quantum photonic technologies. Moreover, unlike electronics, optical systems tend to be bulkier, and thus present significant limitations on scalability. This project aims to design quantum photonic integrated circuits that address these challenges. Carefully-engineered integrated photonic structures, also known as resonators, can store light in a microscopic volume for a long time. Integrating nanoparticles with these resonators can lead to a strong interaction between the light and nanoparticles, which subsequently mediates interaction between photons. Moreover, such integration allows a large size reduction, enabling hundreds of resonators to be made on a single square-millimeter chip. By coaxing individual photons to interact with one other within an array of resonators, a quantum network can be realized that can process quantum information. This project aims to develop a one-of-a-kind platform for quantum technologies that can potentially help scientists better understand effects like high-temperature superconductivity. Furthermore, the project aims to improve the training and education of undergraduate and high school students, with a strong emphasis on including women and minority communities, in scientific research in quantum technologies. Scalability remains a daunting problem for many quantum technologies. Unfortunately, it is virtually impossible to assemble node arrays with single atoms and solid-state defects, which, despite their significant contributions to fundamental quantum science, are not scalable. The field of quantum simulations thus stands to benefit enormously from a new, disruptive experimental platform. To that end, this project aims to marry two emerging fields, namely, solution-processed quantum dots and nanophotonic resonator arrays, to produce a scalable, multi-node quantum system. Nanophotonic resonators can enhance light-matter interaction via the spatial and temporal confinement of light. By deterministically integrating a single solution-processed quantum dot with such a resonator, strong repulsive interactions between photons can be realized. This interaction is necessary for simulating the complicated behavior of electrons in real materials and other strongly correlated quantum many-body systems. Coupling several of such quantum nonlinear resonators is key to engineering all-optical analogs of Hamiltonians of different quantum systems, which are intractable with any classical computer today. Combining modeling and simulation, new synthetic chemistry, and optical characterization, three research thrusts will be pursued under this project: (i) Simulate quantum Hamiltonians using a linear resonator array; (ii) Demonstrate single photon nonlinearity in each resonator; (iii) Perform non-equilibrium quantum simulations with interacting photons. The research builds upon the three investigators' prior work on solution processed quantum materials, design and fabrication of nanophotonic resonators, cavity quantum electrodynamics, and quantum simulations.This project is jointly funded by Quantum Leap Big Idea Program, the Division of Chemistry in the Mathematical and Physical Sciences Directorate, and the Division of Electrical, Communications, and Cyber Systems in the Engineering Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子技术可以彻底改变现代社会,从实现极快的计算和超安全的通信到解锁新材料,如高温超导体,可以改变日常运输,医疗成像和电力输送。在努力实现这些技术的许多物理系统中,光提供了显着的优势。很容易控制和检测被称为光子的光的单个量子。不幸的是,光子不容易相互作用,这对发展量子光子技术构成了严重的瓶颈。此外,与电子器件不同,光学系统往往体积较大,因此对可扩展性存在显著限制。该项目旨在设计解决这些挑战的量子光子集成电路。精心设计的集成光子结构,也称为谐振器,可以在微观体积中长时间存储光。将纳米颗粒与这些谐振器集成可以导致光和纳米颗粒之间的强烈相互作用,随后介导光子之间的相互作用。此外,这种集成允许大的尺寸减小,使得数百个谐振器能够在单个平方毫米的芯片上制造。通过诱导单个光子在谐振器阵列内相互作用,可以实现可以处理量子信息的量子网络。该项目旨在为量子技术开发一个独一无二的平台,可以帮助科学家更好地理解高温超导等效应。此外,该项目旨在改善本科生和高中生的培训和教育,特别强调将妇女和少数民族社区纳入量子技术的科学研究。 对于许多量子技术来说,可扩展性仍然是一个令人生畏的问题。不幸的是,几乎不可能用单个原子和固态缺陷组装节点阵列,尽管它们对基础量子科学做出了重大贡献,但它们是不可扩展的。因此,量子模拟领域将从一个新的、颠覆性的实验平台中受益匪浅。为此,该项目旨在结合两个新兴领域,即溶液处理量子点和纳米光子谐振器阵列,以产生可扩展的多节点量子系统。纳米光子共振器可以通过光的空间和时间限制来增强光与物质的相互作用。通过确定性地将单个溶液处理的量子点与这样的谐振器集成,可以实现光子之间的强排斥相互作用。这种相互作用对于模拟电子在真实的材料和其他强关联量子多体系统中的复杂行为是必要的。耦合几个这样的量子非线性谐振器是工程不同量子系统的哈密顿量的全光学模拟的关键,这是当今任何经典计算机都难以处理的。结合建模和模拟、新的合成化学和光学表征,该项目将追求三个研究方向:(i)使用线性谐振器阵列模拟量子哈密顿量;(ii)演示每个谐振器中的单光子非线性;(iii)利用相互作用的光子进行非平衡量子模拟。该研究建立在三位研究人员先前在溶液处理量子材料,纳米光子谐振器的设计和制造,腔量子电动力学和量子模拟方面的工作基础上。该项目由量子飞跃大创意计划,数学和物理科学理事会化学部以及电气,通信,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Active Tuning of Hybridized Modes in a Heterogeneous Photonic Molecule
  • DOI:
    10.1103/physrevapplied.13.044041
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Kevin C. Smith;Yueyang Chen;A. Majumdar;D. Masiello
  • 通讯作者:
    Kevin C. Smith;Yueyang Chen;A. Majumdar;D. Masiello
Exact k -body representation of the Jaynes-Cummings interaction in the dressed basis: Insight into many-body phenomena with light
  • DOI:
    10.1103/physreva.104.013707
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Kevin C. Smith;A. Bhattacharya;D. Masiello
  • 通讯作者:
    Kevin C. Smith;A. Bhattacharya;D. Masiello
Predicting Indium Phosphide Quantum Dot Properties from Synthetic Procedures Using Machine Learning
使用机器学习从合成过程预测磷化铟量子点特性
  • DOI:
    10.1021/acs.chemmater.2c00640
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Nguyen, Hao A.;Dou, Florence Y.;Park, Nayon;Wu, Shenwei;Sarsito, Harrison;Diakubama, Benedicte;Larson, Helen;Nishiwaki, Emily;Homer, Micaela;Cash, Melanie
  • 通讯作者:
    Cash, Melanie
Nanometer-Scale Spatial and Spectral Mapping of Exciton Polaritons in Structured Plasmonic Cavities
  • DOI:
    10.1103/physrevlett.128.197401
  • 发表时间:
    2022-05-12
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bourgeois, Marc R.;Beutler, Elliot K.;Masiello, David J.
  • 通讯作者:
    Masiello, David J.
Seeded Growth of Nanoscale Semiconductor Tetrapods: Generality and the Role of Cation Exchange
  • DOI:
    10.1021/acs.chemmater.0c01407
  • 发表时间:
    2020-06-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Enright, Michael J.;Dou, Florence Y.;Cossairt, Brandi M.
  • 通讯作者:
    Cossairt, Brandi M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arka Majumdar其他文献

Full color Imaging with Large-Aperture Meta-Optics
使用大孔径超光学器件进行全彩色成像
Full color visible imaging with crystalline silicon meta-optics
基于晶体硅超构表面的全彩可见光成像
  • DOI:
    10.1038/s41377-025-01888-w
  • 发表时间:
    2025-06-18
  • 期刊:
  • 影响因子:
    23.400
  • 作者:
    Johannes E. Fröch;Luocheng Huang;Zhihao Zhou;Virat Tara;Zhuoran Fang;Shane Colburn;Alan Zhan;Minho Choi;Arnab Manna;Andrew Tang;Zheyi Han;Karl F. Böhringer;Arka Majumdar
  • 通讯作者:
    Arka Majumdar
Strain-tunable emission from single photon emitters in a Hexagonal Boron Nitride Metasurface
六方氮化硼超表面中单光子发射器的应变可调发射
Low-loss multilevel operation using lossy phase-change material-integrated silicon photonics
使用有损相变材料集成硅光子学进行低损耗多级操作
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Rui Chen;Virat Tara;Jayita Dutta;Zhuoran Fang;Jiajiu Zheng;Arka Majumdar
  • 通讯作者:
    Arka Majumdar
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
超低功率光纤耦合砷化镓光子晶体腔电光调制器。
  • DOI:
    10.1364/oe.19.007530
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    G. Shambat;B. Ellis;M. Mayer;Arka Majumdar;E. E. Haller;J. Vučković
  • 通讯作者:
    J. Vučković

Arka Majumdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arka Majumdar', 18)}}的其他基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329089
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
EFRI BRAID: Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation
EFRI BRAID:用于预测性和适应性大脑恢复和增强的光学神经协处理器
  • 批准号:
    2223495
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127235
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons
OP:量子光物质与范德华激子极化子的相互作用
  • 批准号:
    2103673
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
GCR: Meta-Optical Angioscopes for Image-Guided Therapies in Previously Inaccessible Locations
GCR:元光学血管镜,用于在以前无法到达的位置进行图像引导治疗
  • 批准号:
    2120774
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
OP: Spatial Light Modulation using Reconfigurable Phase Change Material Metasurfaces
OP:使用可重构相变材料超表面进行空间光调制
  • 批准号:
    2003509
  • 财政年份:
    2020
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CAREER: Van der Waals material integrated ultra-low power nanophotonics
职业:范德华材料集成超低功耗纳米光子学
  • 批准号:
    1845009
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QLC: EAGER: Quantum Simulation Using Solution Processed Quantum Dots Coupled to Nano-cavities
QLC:EAGER:使用溶液处理的量子点耦合到纳米腔进行量子模拟
  • 批准号:
    1836500
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
OP: Electrically Controlled Solid-State Cavity QED with Single Emitters in Monolayer Material
OP:单层材料中具有单发射极的电控固态腔 QED
  • 批准号:
    1708579
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了