Protein Crystallization Programmed with DNA
用 DNA 编程的蛋白质结晶
基本信息
- 批准号:2104353
- 负责人:
- 金额:$ 52.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYProteins are natural, tiny molecular machines – often 10,000 times smaller than the width of a human hair – that play crucial roles in biology. Since their discovery almost 200 years ago, understanding their structures and functions has enabled scientists to learn about the processes that underpin life and solve scientific problems facing humanity. However, their tiny size makes them incredibly difficult to characterize and understand. One powerful way to determine the structures and functions of proteins is protein crystallography, a technique where X-rays interact with a highly ordered assembly of proteins, known as a single crystal. Unfortunately, obtaining protein single crystals represents a major bottleneck in this process because proteins can interact with each other in many ways that prevent them from forming highly ordered assemblies. This project aims to overcome this challenge using DNA – the genetic code of life – as a blueprint to define the interactions between proteins and thus control how they arrange into single crystals. Importantly, these single crystals will not only provide insight into the tiny world of proteins but will function as new, synthetic materials in their own right, useful as sustainable catalysts or energy conversion materials. Using DNA to control protein interactions and arrangement will allow crystals to be assembled by design. This work will help transform protein crystallography from an experiment of chance to an experiment of purpose to solve pressing societal needs in energy, sustainability, and medicine. Researchers at various stages of their careers (from undergraduate students to postdoctoral researchers) will benefit from the training provided by this project, and will disseminate their knowledge and skills in publications, presentations, and by engagement with students from typically underrepresented and marginalized groups through synergistic outreach activities.PART 2: TECHNICAL SUMMARYProtein single crystals provide valuable, angstrom-level resolution and structural insight into the macromolecules that engender the infrastructure of life and represent a promising class of biomaterials with cooperative properties and concerted functions. This project seeks to understand the interactions that drive crystallization and discover a means to disrupt, reprogram, and redefine those interactions, using the programmability of DNA. This challenge will be approached from four complementary perspectives, each of which will yield valuable fundamental insight into protein crystallization: increasing the role of DNA in protein-DNA crystals; investigating how symmetry and valency affect crystallization; defining specific protein interfaces within crystals; and manipulating the conformations of flexible proteins so that they can be controlled and, ultimately, harnessed. These findings will result in design principles that will allow one to exploit the many distinct attributes of DNA, including its specific hybridization, tunable length, inherent flexibility, and tailorable interaction strength, to program the assembly of proteins. Therefore, achieving these objectives will not only render challenging proteins amenable to crystallographic analysis but also, importantly, open a new class of tailorable, programmed crystalline materials that can harness the intrinsic functionality of proteins. This project will generate new fundamental knowledge of how to control the interplay between DNA-DNA and protein-protein interactions, thereby empowering researchers with tools to engineer the structural outcomes of protein crystallization towards the creation of novel functional biomaterials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术摘要是天然的,微小的分子机器,通常比人毛的宽度小10,000倍 - 在生物学中起着至关重要的作用。自从他们的发现大约200年前,了解它们的结构和功能使科学家能够了解基于生命的过程并解决人类面临的科学问题的过程。但是,它们的尺寸很小,使它们难以表征和理解。确定蛋白质的结构和功能的一种强大方法是蛋白质晶体学,这是一种X射线与高度有序的蛋白质组装(称为单晶体)相互作用的技术。不幸的是,获得蛋白质单晶体在此过程中代表了一个主要的瓶颈,因为蛋白质可以以许多方式相互相互作用,以防止它们形成高度有序的组件。该项目旨在使用DNA(生命的遗传密码)来克服这一挑战,作为定义蛋白质之间相互作用的蓝图,从而控制它们如何排列到单晶。重要的是,这些单晶不仅将提供对蛋白质微小世界的见解,而且本身将充当新的合成材料,作为可持续催化剂或能量转化材料。使用DNA来控制蛋白质相互作用和排列将使晶体通过设计组装。工作将有助于将蛋白质晶体学从偶然的实验转变为目的实验,以解决能源,可持续性和医学上的社会需求。职业生涯各个阶段的研究人员(从本科生到博士后研究人员)将受益于该项目提供的培训,并将通过与典型的代表性不足和边缘化的群体的互动来传播其出版物,演示的知识和技能。产生生命的基础设施并代表具有合作特性和协同功能的生物材料类别的大分子。该项目旨在了解驱动结晶的相互作用,并发现使用DNA的可编程性,以破坏,重新编程和重新定义这些相互作用的方法。将从四个完整的角度应对这一挑战,每个角度都将产生对蛋白质结晶的有价值的基本见解:增加DNA在蛋白质-DNA晶体中的作用;研究对称和估值如何影响结晶;定义晶体内的特定蛋白质界面;并操纵柔性蛋白质的构象,以便可以控制并最终利用它们。这些发现将导致设计原理,从而使人们能够探索DNA的许多不同属性,包括其特定的杂交,可调长度,继承灵活性和可定制的相互作用强度,以编程蛋白质组装。因此,实现这些目标不仅会使挑战蛋白适合晶体学分析,而且还要开设一类新的可调整,程序化的晶体材料,这些材料可以利用蛋白质的内在功能。该项目将产生有关如何控制DNA-DNA和蛋白质 - 蛋白质相互作用之间相互作用的新基本知识,从而使研究人员使用工具来促进蛋白质结晶的结构性成果,以创建新型功能性生物材料。这是NSF的法定任务,反映了NSF的法定范围,并通过评估了Intelligia the Intelligia and Founceiatial and Inthernitial and Intperiatial的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chad Mirkin其他文献
Chad Mirkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chad Mirkin', 18)}}的其他基金
Collaborative Research: IIBR Instrumentation: The Nanosizer - A new tool for the preparation of arbitrary bioactive surfaces
合作研究:IIBR 仪器:Nanosizer - 用于制备任意生物活性表面的新工具
- 批准号:
2032180 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Allosterically Regulated Supramolecular Capsules and Receptors Assembled via the WLA
通过 WLA 组装的变构调节超分子胶囊和受体
- 批准号:
1709888 - 财政年份:2017
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Collaborative Research: IDBR: Type A: The Nanosizer: A New Tool For the Photochemical Fabrication of Bioactive Nanoarrays
合作研究:IDBR:A 型:Nanosizer:生物活性纳米阵列光化学制造的新工具
- 批准号:
1353682 - 财政年份:2014
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Stimuli-Responsive Supramolecular Assemblies
刺激响应超分子组装体
- 批准号:
1149314 - 财政年份:2012
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Collaborative Research: IDBR: The Nanosizer: A New Nanolithographic Tool for Preparing Combinatorial Arrays in Situ
合作研究:IDBR:Nanosizer:一种用于原位制备组合阵列的新型纳米光刻工具
- 批准号:
1152139 - 财政年份:2012
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
2008 NSF-MEXT Young Researchers Exchange Program
2008年NSF-MEXT青年研究员交流计划
- 批准号:
0822667 - 财政年份:2008
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Lipid Dip-Pen Nanolithography for Model Bio-Membrane Systems
用于模型生物膜系统的脂质浸笔纳米光刻
- 批准号:
0723542 - 财政年份:2007
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Nanoscale Science & Engineering Center for Integrated Nanopatterning and Detection Technologies
纳米科学
- 批准号:
0647560 - 财政年份:2006
- 资助金额:
$ 52.5万 - 项目类别:
Cooperative Agreement
Metallosupramolecular Complexes Through Coordination Chemistry
通过配位化学制备金属超分子配合物
- 批准号:
0447674 - 财政年份:2005
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
相似国自然基金
长时连续复杂变形条件下镁合金动态再结晶行为与调控机理
- 批准号:52304391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高分子熔体结晶过程中的链折叠与穿插行为:基于定点标记与重构的研究
- 批准号:22373029
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
纳米级相变薄膜的反常结晶动力学行为及其存储器件特性研究
- 批准号:62374096
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
激光选区熔化钛合金热等静压缺陷愈合诱发再结晶机理与疲劳性能研究
- 批准号:52305334
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高结晶性多稠环受体类n型半导体聚合物的合成及晶体管性能研究
- 批准号:22375051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Exploiting the Mechanobiology of PD-1 for Cancer Immunotherapy
利用 PD-1 的力学生物学进行癌症免疫治疗
- 批准号:
10174887 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
T-cell intrinsic mechanisms of resistance to PD-1 checkpoint blockade
T 细胞抵抗 PD-1 检查点阻断的内在机制
- 批准号:
10171108 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
Exploiting the Mechanobiology of PD-1 for Cancer Immunotherapy
利用 PD-1 的力学生物学进行癌症免疫治疗
- 批准号:
10408747 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
Exploiting the Mechanobiology of PD-1 for Cancer Immunotherapy
利用 PD-1 的力学生物学进行癌症免疫治疗
- 批准号:
10524207 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
Structure, Function and Mechanistic Analysis of LAG3
LAG3的结构、功能及机理分析
- 批准号:
10317043 - 财政年份:2019
- 资助金额:
$ 52.5万 - 项目类别: