Investigation and control of 2D-3D interfacial states

2D-3D 界面态的研究和控制

基本信息

项目摘要

Non-technical description: This project aims to experimentally investigate newly observed interfacial quantum states on heterojunctions of layered materials (e.g., graphene) and bulk semiconductors (e.g., silicone). These emerging states are independent of the intrinsic electronic structures of either the layered or bulk materials, but a novel interfacial effect, which enriches our current understanding of low-dimensional solid-state systems. This study opens alternative pathways towards artificial quantum structures for novel electronic, optoelectronic, and quantum technologies that are in line with the National Quantum Initiative Act. The scientific outcomes are disseminated via journals, conferences, and invited talks. More importantly, the research institute of this project, Georgia State University, is a historically minority-serving institution and top-ranked innovative teaching university. Many undergraduate and graduate students, especially underrepresented minority groups will be included in this cutting-edge research and prepare them for careers in science, technology, engineering, and mathematics. Undergraduate students typically continue their study in STEM graduate programs. Graduate students usually pursue their academic careers in universities, national laboratories, and federal research institutions or become leaders in the industries of semiconductors, information technology, etc. Furthermore, the project exposes the Greater Atlanta Area to the frontier of modern quantum science and technology via open houses, talks, summer internships so that the public and K-12 students get access to the state-of-the-art technology and latest scientific progress along with this research. Technical description: Fabrication of layered material heterostructures facilitates the construction of artificial quantum interactions, otherwise intangible in intrinsic materials. Currently, most of these emerging structures are interpreted by the well-established framework of in-plane electronic interactions, whereas a resonant tunneling behavior of graphene-silicon junctions recently discovered by the PI suggests the existence of out-of-plane quantum states, which is originated from an abrupt dimensional change on the interfaces. This new observation refreshes the understanding of reduced-dimensional materials and empowers new designs of artificial quantum structures, as such, necessitates a thorough investigation on the formation mechanism and control methods of these states without delay. For this purpose, this study primarily employs tunneling spectroscopy as the first experimental attempt to identify the determinative factors of these states, including transverse momentum mismatch, lattice orientations, and dielectric properties of the junctions. Following that, temperature-dependent measurements and in-situ atomic/molecular adsorption experiments also unveil the phonon-/defect-induced scattering and inelastic tunneling processes to explore the relaxation of these out-of-plane states. The investigation on these topics enables the construction of novel quantum devices, including layered multiple-well resonant tunneling transistors and resonant molecular detectors, to showcase the transformational potentials of this project. These efforts enrich our comprehension of the interfacial quantum interactions on reduced-dimensional heterostructures, meanwhile envision a breadth of new strategies for the design of terahertz light sources and detectors, cascade optoelectronics, and many other electronic, optoelectronic, and quantum architectures. Furthermore, the project is accompanied by extensive training and education for participating graduate, undergraduate students, and interns to accelerate their career trajectories in condensed matter physics and quantum science. It also promotes the public education of modern quantum science and technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性说明:该项目旨在实验研究新观察到的分层材料异质结上的界面量子态(例如,石墨烯)和体半导体(例如,硅树脂)。这些新出现的态独立于层状或块状材料的本征电子结构,而是一种新颖的界面效应,这丰富了我们目前对低维固态系统的理解。这项研究为新型电子,光电和量子技术的人工量子结构开辟了替代途径,符合国家量子倡议法案。科学成果通过期刊、会议和特邀演讲传播。更重要的是,本项目的研究机构--格鲁吉亚州立大学,是一所历史上为少数民族服务的机构,也是一流的创新型教学大学。许多本科生和研究生,特别是代表性不足的少数群体将被纳入这项前沿研究,并为他们在科学,技术,工程和数学方面的职业生涯做好准备。本科生通常继续在STEM研究生课程学习。研究生通常在大学,国家实验室和联邦研究机构从事学术事业,或成为半导体,信息技术等行业的领导者。此外,该项目通过开放日,会谈,暑期实习,使公众和K-12学生获得国家的最先进的技术和最新的科学进展沿着这项研究。技术说明:层状材料异质结构的制造促进了人工量子相互作用的构建,否则在本征材料中是无形的。目前,大多数这些新兴的结构都是由平面内电子相互作用的既定框架来解释的,而PI最近发现的石墨烯-硅结的共振隧穿行为表明存在平面外量子态,这是源于界面上突然的尺寸变化。这一新的观察刷新了对降维材料的理解,并使人工量子结构的新设计成为可能,因此,有必要立即对这些状态的形成机制和控制方法进行彻底的研究。为此,本研究主要采用隧道光谱作为第一个实验尝试,以确定这些状态的决定因素,包括横向动量失配,晶格取向,和介电性能的结。随后,温度相关的测量和原位原子/分子吸附实验也揭示了声子/缺陷诱导的散射和非弹性隧穿过程,以探索这些面外态的弛豫。对这些主题的研究使新型量子器件的构建成为可能,包括分层多阱共振隧穿晶体管和共振分子探测器,以展示该项目的变革潜力。这些工作丰富了我们对降维异质结构上界面量子相互作用的理解,同时为太赫兹光源和探测器、级联光电子学以及许多其他电子、光电子和量子体系结构的设计设想了一系列新的策略。此外,该项目还为参与的研究生,本科生和实习生提供了广泛的培训和教育,以加速他们在凝聚态物理和量子科学方面的职业轨迹。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sidong Lei其他文献

Synthesis and photo-response study on GaSe and InSe atomic layers
GaSe和InSe原子层的合成及光响应研究
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sidong Lei
  • 通讯作者:
    Sidong Lei
Solid-Liquid Self-Adaptive Polymeric Composite.
固液自适应聚合物复合材料。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Pei Dong;A. Chipara;Phillip E. Loya;Yingchao Yang;L. Ge;Sidong Lei;Bo Li;G. Brunetto;L. Machado;Liang Hong;Qizhong Wang;Bilan Yang;Hua Guo;E. Ringe;D. Galvão;R. Vajtai;M. Chipara;M. Tang;J. Lou;P. Ajayan
  • 通讯作者:
    P. Ajayan
Enhancement in Photoluminescence of CaMoO4 : Eu3 + Through Introducing MVO4 (M = Y or Bi)
通过引入 MVO4(M = Y 或 Bi)增强 CaMoO4 : Eu3 的光致发光
  • DOI:
    10.1149/1.3240199
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sidong Lei;Xueliang Zhang;Zhaosheng Li;Tao Yu;Z. Zou
  • 通讯作者:
    Z. Zou

Sidong Lei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sidong Lei', 18)}}的其他基金

CAREER: van der Waals Semiconductor Integration via Surface and Interface Tailoring
职业:通过表面和界面定制进行范德华半导体集成
  • 批准号:
    2238564
  • 财政年份:
    2023
  • 资助金额:
    $ 29.49万
  • 项目类别:
    Continuing Grant

相似国自然基金

Pt/碲化物亲氧性调控助力醇类燃料电氧化的研究
  • 批准号:
    22302168
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:
Lagrange网络实用同步的不连续控制研究
  • 批准号:
    61603174
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
职业因素致慢性肌肉骨骼损伤模型及防控研究
  • 批准号:
    81172643
  • 批准年份:
    2011
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
呼吸中枢低氧通气反应的遗传机制及其对睡眠呼吸障碍的影响
  • 批准号:
    81070069
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
动态无线传感器网络弹性化容错组网技术与传输机制研究
  • 批准号:
    61001096
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
超临界机翼激波三维鼓包控制机理及参数优化研究
  • 批准号:
    10972233
  • 批准年份:
    2009
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
中枢钠氢交换蛋白3在睡眠呼吸暂停呼吸控制稳定性中的作用和调控机制
  • 批准号:
    30900646
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
  • 批准号:
    90818016
  • 批准年份:
    2008
  • 资助金额:
    50.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Spin current control of internal degree of freedom in 2D materials
二维材料内部自由度的自旋流控制
  • 批准号:
    23K13062
  • 财政年份:
    2023
  • 资助金额:
    $ 29.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Establishment of 3D structure control methods of 2D hexagonal BN and thermal management of resin using them.
建立2D六方BN的3D结构控制方法以及利用该方法对树脂进行热管理。
  • 批准号:
    23H01710
  • 财政年份:
    2023
  • 资助金额:
    $ 29.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Probing 2D material properties using ultrafast Quantum Interference Control
使用超快量子干涉控制探测 2D 材料特性
  • 批准号:
    559996-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 29.49万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Mechanical control of the electronic properties of 2D ferroelectrics
二维铁电体电子特性的机械控制
  • 批准号:
    2212965
  • 财政年份:
    2022
  • 资助金额:
    $ 29.49万
  • 项目类别:
    Standard Grant
Discovery and Control of Skyrmions in 2D van der Waals Magnets
二维范德华磁体中斯格明子的发现和控制
  • 批准号:
    2206987
  • 财政年份:
    2022
  • 资助金额:
    $ 29.49万
  • 项目类别:
    Continuing Grant
Potential-responsive Luminescence Switching Based on Layer Charge Control in 2D Multiple Oxides
基于二维多重氧化物层电荷控制的电势响应发光开关
  • 批准号:
    22K05264
  • 财政年份:
    2022
  • 资助金额:
    $ 29.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chemical Control of Spin and Carrier Dynamics in 2D Hybrid Metal Halide Double Perovskites
二维杂化金属卤化物双钙钛矿中自旋和载流子动力学的化学控制
  • 批准号:
    2203633
  • 财政年份:
    2022
  • 资助金额:
    $ 29.49万
  • 项目类别:
    Standard Grant
CAREER: Manipulating Topology and Correlations in 2D Heterostructures by Dynamic Structural Control
职业:通过动态结构控制操纵二维异质结构的拓扑和相关性
  • 批准号:
    2046849
  • 财政年份:
    2021
  • 资助金额:
    $ 29.49万
  • 项目类别:
    Continuing Grant
Probing 2D material properties using ultrafast Quantum Interference Control
使用超快量子干涉控制探测 2D 材料特性
  • 批准号:
    559996-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 29.49万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Using Spacer Molecular Structure to Control Energetics, Stability, Charge-Carrier Transport, and Photovoltaic Performance in 2D Organic Metal Halide Perovskites
利用间隔分子结构控制二维有机金属卤化物钙钛矿的能量、稳定性、载流子传输和光伏性能
  • 批准号:
    2102257
  • 财政年份:
    2021
  • 资助金额:
    $ 29.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了