Exploring ultra-wide bandgap ambipolar transparent conducting semiconductors for deep ultraviolet optoelectronic devices
探索用于深紫外光电器件的超宽带隙双极性透明导电半导体
基本信息
- 批准号:2105566
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Semiconductor laser diodes are an important component in a wide range of consumer and industrial products. The basic structure of a laser diode contains p- and n-type semiconductor thin film layers. Majority carriers in n- and p-type semiconductors are electrons and holes, which can be regarded as negatively and positively charged particles, respectively. Once the device is connected with an energy source such as a battery, the electrons and holes meet in the junction and recombine to emit light. Semiconductor lasers emitting light with a wavelength in the visible and infrared ranges have been widely available. In contrast, semiconductor lasers with shorter wavelength in the ultraviolet-B and ultraviolet-C bands (specifically with wavelength less than 315 nanometers) are severely underdeveloped. This is because the semiconductors commonly known as ultra-wide bandgap semiconductors such as aluminum gallium nitride, which are supposed to emit light in these spectral bands, have not been made with strong p-type material reliably. The proposed research addresses this challenge by developing a new ultra-wide bandgap semiconductor magnesium gallium oxide, which will be doped into both n-type and p-type. The PI and students will grow, fabricate and characterize light emitting devices and lasers based on these novel materials with a goal of demonstrating deep ultraviolet semiconductor laser devices with emission wavelengths between 200 and 270 nanometers. These deep ultraviolet semiconductor lasers have important applications in deep space communication, environmental monitoring, missile and flame detection, information storage and recording, virus disinfection and water purification, photodynamic medical diagnosis, therapy, and surgery, and so on. As a part of the effort, this project will train graduate and undergraduate students and involve these from underrepresented minorities to engineering. In addition, learning sessions on the subject closely related to the project will be planned for local high school students during their visit to the annual event “Discovery Day” at the College of Engineering, UC Riverside, and summer research opportunities will be provided to some high schoolers to prepare them for science fairs. This project seeks to demonstrate the first ambipolar ultra-wide bandgap transparent conducting semiconductor with bandgap of larger than 4.9 eV for deep-ultraviolet photonics. The research is planned based on the PI group’s recent finding that ultra-wide bandgap magnesium gallium oxide (MgGaO) is a strong p-type transparent conducting oxide semiconductor. The project will comprehensively study ultra-wide bandgap MgGaO, controllable p- and n-type doping of MgGaO, MgGaO/XGaO (X: Mg, Al) heterostructures, and their optoelectronic devices. The project will synthesize these semiconductors using molecular beam epitaxy and will elucidate their structural, electrical and optical properties using various characterization techniques. The origin of the p- and n-type doping of MgGaO will be revealed through detailed characterizations including Hall effect, photoluminescence, x-ray photoelectron spectroscopy, etc. Deep-ultraviolet semiconductor lasers, light emitting diodes (LEDs) and photodetectors with wavelengths less than 270 nm will be fabricated and characterized. The result will be an important step across the current boundary for the emission wavelength of semiconductor waveguide lasers, currently 375 nm in commercial use – an important advance that will enable significant economic opportunities in many technology-based domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
半导体激光二极管是各种消费者和工业产品中的重要组成部分。激光二极管的基本结构包含P-和N型半导体薄膜层。 N-和P型半导体中的多数载体是电子和孔,可以分别被视为负电荷的颗粒。设备与电池等能源连接后,电子和孔在结处相交并重新组合以发光。半导体激光器在可见的范围内发出波长,已广泛使用。相比之下,在紫外线B和紫外线和紫外线带(特别是小于315纳米的波长)中波长短的半导体激光器是高度不发达的。这是因为通常被称为超宽带隙半导体的半导体,例如硝酸铝制镀铝,预计会在这些光谱带中发出光,并未用强的P型材料可靠地制成。拟议的研究通过开发一种新的超宽带隙半导体氧化镁来解决这一挑战,该镁将掺杂到N型和P型中。 PI和学生将根据这些新型材料生长,制造和表征发光设备和激光器,其目的是展示深紫外线半导体激光器设备,其发射波长在200至270纳米之间。这些深空紫外线激光器在深空通信,环境监测,导弹和火焰检测,信息存储和记录,病毒消毒和水净化,光动力学医学诊断,治疗和手术等方面具有重要应用。作为努力的一部分,该项目将培训毕业生和本科生,并将这些项目从代表性不足的少数民族到工程学。此外,在访问年度活动的“发现日”的年度“探索日”,在工程学学院,加州大学河滨加州大学河滨大学的年度活动中,将计划与该项目密切相关的学科学习课程,并将向一些高中生提供夏季研究机会,以准备科学博览会。该项目旨在证明第一个具有大于4.9 eV的带隙,用于深硫化体光子学,带有大于4.9 eV的双极超宽带镜头透明导电半导体。这项研究是根据PI集团最近的发现计划的,即超宽的带长镁氧化镁(MGGAO)是强大的P型透明导电氧化物半导体。该项目将全面研究MGGAO,MGGAO/XGAO(X:MG,AL)异质结构的超宽带有MGGAO,受控的P-和N型掺杂及其光电设备。该项目将使用分子束外延合成这些半导体,并使用各种特征技术阐明其结构,电气和光学性能。 MGGAO的P和N型掺杂的起源将通过详细字符揭示,包括Hall效果,光致发光,X射线光电光谱等。深硫化型半导体激光器,光发射Diodes(LED)和波长少于270 nm和270 nm的光电材料。结果将是整个当前边界的重要一步,即半导体波导激光器的发射波长,目前在商业用途方面有375 nm,这将是一个重要的进步,这将使许多基于技术的领域在许多基于技术的领域中都能实现大量的经济机会。该奖项反映了NSF的法定任务,并认为通过基金会的知识优点和广泛的影响,它被认为是通过评估来支持的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianlin Liu其他文献
Enhanced output power using MgZnO/ZnO/MgZnO double heterostructure in ZnO homojunction light-emitting diode
在 ZnO 同质结发光二极管中使用 MgZnO/ZnO/MgZnO 双异质结构增强输出功率
- DOI:
10.1117/12.877322 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
S. Chu;Jianze Zhao;Z. Zuo;J. Kong;Lin Li;Jianlin Liu - 通讯作者:
Jianlin Liu
Fracture Prediction for an Advanced High-Strength Steel Sheet Using the Fully Coupled Elastoplastic Damage Model with Stress-State Dependence
使用具有应力状态依赖性的全耦合弹塑性损伤模型预测先进高强度钢板的断裂
- DOI:
10.1007/s10338-020-00185-w - 发表时间:
2020-08 - 期刊:
- 影响因子:2.2
- 作者:
Kai Zhang;Mingchuan Wang;Weijie Liu;Jianlin Liu - 通讯作者:
Jianlin Liu
The effect of the long-range order in a quantum dot array on the in-plane lattice thermal conductivity
量子点阵列中的长程有序对面内晶格热导率的影响
- DOI:
10.1006/spmi.2001.0981 - 发表时间:
2001 - 期刊:
- 影响因子:3.1
- 作者:
A. Khitun;A. Balandin;Jianlin Liu;Kang L. Wang - 通讯作者:
Kang L. Wang
Clarifying pathways to poor psychological health: The mediating role of psychosocial factors in the relationship between general psychopathology and quality of life impairment in patients diagnosed with schizophrenia
澄清心理健康状况不佳的途径:心理社会因素在精神分裂症患者一般精神病理学与生活质量损害之间关系中的中介作用
- DOI:
10.1002/jclp.22747 - 发表时间:
2019 - 期刊:
- 影响因子:3
- 作者:
Jianlin Liu;E. Abdin;S. Verma;K. Sim;S. Chong;M. Subramaniam - 通讯作者:
M. Subramaniam
Experimental Study of the Effect of the Quantum Well Structures on the Thermoelectric Figure of Merit in Si/Si 1- x Ge x System
量子阱结构对Si/Si 1- x Ge x 体系热电品质因数影响的实验研究
- DOI:
10.1557/proc-545-369 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
X. Sun;Jianlin Liu;S. Cronin;Kang L. Wang;Gang Chen;T. Koga;M. Dresselhaus - 通讯作者:
M. Dresselhaus
Jianlin Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianlin Liu', 18)}}的其他基金
Collaborative Research: Studies of Electron Injection-Induced Effects in ZnO-based Materials and Device Structures
合作研究:ZnO基材料和器件结构中电子注入诱导效应的研究
- 批准号:
0900978 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Materials World Network: Ordered Ge/Si Core-Shell Nanostructures for Nonvolatile Memory Applications
材料世界网络:用于非易失性存储器应用的有序 Ge/Si 核壳纳米结构
- 批准号:
0807232 - 财政年份:2008
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
High-performance Hetero-nanocrystal Memories
高性能异质纳米晶体存储器
- 批准号:
0725630 - 财政年份:2007
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
SGER: Scalability of Hetero-Nanocrystal Memory
SGER:异质纳米晶体存储器的可扩展性
- 批准号:
0622647 - 财政年份:2006
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
相似国自然基金
高性能纤维混凝土构件抗爆的强度预测
- 批准号:51708391
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
- 批准号:31471690
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
超高频超宽带系统射频基带补偿理论与技术的研究
- 批准号:61001097
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
- 批准号:60976066
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
- 批准号:
24K17312 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
FuSe-TG: Electro-Thermal Co-Design Center for Ultra-Wide Bandgap Semiconductor Devices
FuSe-TG:超宽带隙半导体器件电热协同设计中心
- 批准号:
2234479 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
in situ Epigenetic Profiling of Single Cells in Kidney
肾脏单细胞的原位表观遗传分析
- 批准号:
10645605 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
REMARKABLE: Rural Environmental Monitoring via ultra wide-ARea networKs And distriButed federated LEarning
引人注目:通过超广域网和分布式联合学习进行农村环境监测
- 批准号:
EP/X039048/1 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Research Grant