Exploring ultra-wide bandgap ambipolar transparent conducting semiconductors for deep ultraviolet optoelectronic devices

探索用于深紫外光电器件的超宽带隙双极性透明导电半导体

基本信息

  • 批准号:
    2105566
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Semiconductor laser diodes are an important component in a wide range of consumer and industrial products. The basic structure of a laser diode contains p- and n-type semiconductor thin film layers. Majority carriers in n- and p-type semiconductors are electrons and holes, which can be regarded as negatively and positively charged particles, respectively. Once the device is connected with an energy source such as a battery, the electrons and holes meet in the junction and recombine to emit light. Semiconductor lasers emitting light with a wavelength in the visible and infrared ranges have been widely available. In contrast, semiconductor lasers with shorter wavelength in the ultraviolet-B and ultraviolet-C bands (specifically with wavelength less than 315 nanometers) are severely underdeveloped. This is because the semiconductors commonly known as ultra-wide bandgap semiconductors such as aluminum gallium nitride, which are supposed to emit light in these spectral bands, have not been made with strong p-type material reliably. The proposed research addresses this challenge by developing a new ultra-wide bandgap semiconductor magnesium gallium oxide, which will be doped into both n-type and p-type. The PI and students will grow, fabricate and characterize light emitting devices and lasers based on these novel materials with a goal of demonstrating deep ultraviolet semiconductor laser devices with emission wavelengths between 200 and 270 nanometers. These deep ultraviolet semiconductor lasers have important applications in deep space communication, environmental monitoring, missile and flame detection, information storage and recording, virus disinfection and water purification, photodynamic medical diagnosis, therapy, and surgery, and so on. As a part of the effort, this project will train graduate and undergraduate students and involve these from underrepresented minorities to engineering. In addition, learning sessions on the subject closely related to the project will be planned for local high school students during their visit to the annual event “Discovery Day” at the College of Engineering, UC Riverside, and summer research opportunities will be provided to some high schoolers to prepare them for science fairs. This project seeks to demonstrate the first ambipolar ultra-wide bandgap transparent conducting semiconductor with bandgap of larger than 4.9 eV for deep-ultraviolet photonics. The research is planned based on the PI group’s recent finding that ultra-wide bandgap magnesium gallium oxide (MgGaO) is a strong p-type transparent conducting oxide semiconductor. The project will comprehensively study ultra-wide bandgap MgGaO, controllable p- and n-type doping of MgGaO, MgGaO/XGaO (X: Mg, Al) heterostructures, and their optoelectronic devices. The project will synthesize these semiconductors using molecular beam epitaxy and will elucidate their structural, electrical and optical properties using various characterization techniques. The origin of the p- and n-type doping of MgGaO will be revealed through detailed characterizations including Hall effect, photoluminescence, x-ray photoelectron spectroscopy, etc. Deep-ultraviolet semiconductor lasers, light emitting diodes (LEDs) and photodetectors with wavelengths less than 270 nm will be fabricated and characterized. The result will be an important step across the current boundary for the emission wavelength of semiconductor waveguide lasers, currently 375 nm in commercial use – an important advance that will enable significant economic opportunities in many technology-based domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
半导体激光二极管是广泛的消费和工业产品中的重要组件。激光二极管的基本结构包含p型和n型半导体薄膜层。 n型和p型半导体中的大多数载流子是电子和空穴,它们可以分别被视为带负电和带正电的粒子。一旦设备与电池等能源连接,电子和空穴就会在结处相遇并重新结合发光。发射波长在可见光和红外线范围内的光的半导体激光器已经被广泛使用。相比之下,在紫外线-B和紫外线-C波段中具有较短波长的半导体激光器(特别是波长小于315纳米的半导体激光器)严重不发达。这是因为通常被称为超宽带隙半导体的半导体,如氮化铝镓,应该在这些光谱带中发光,并没有可靠地用强p型材料制成。拟议的研究通过开发一种新的超宽带隙半导体镁镓氧化物来解决这一挑战,这种半导体将被掺杂成n型和p型。PI和学生将生长,制造和表征基于这些新材料的发光器件和激光器,目的是展示发射波长在200至270纳米之间的深紫外半导体激光器件。这些深紫外半导体激光器在深空通信、环境监测、导弹和火焰探测、信息存储和记录、病毒消毒和水净化、光动力医学诊断、治疗和手术等方面有重要应用。作为这项工作的一部分,这个项目将培养研究生和本科生,并使这些人数不多的少数民族进入工程领域。此外,将在当地高中生参观加州大学滨江分校工程学院的年度活动“发现日”期间为他们计划有关与该项目密切相关的主题的学习课程,并将为一些高中生提供夏季研究机会。学生为科学博览会做好准备。 该项目旨在展示第一个双极性超宽带隙透明导电半导体,其带隙大于4.9 eV,用于深紫外光子学。该研究计划基于PI小组最近的发现,即超宽带隙氧化镁镓(MgGaO)是一种强p型透明导电氧化物半导体。该项目将全面研究超宽带隙MgGaO、MgGaO的可控p型和n型掺杂、MgGaO/XGaO(X:Mg,Al)异质结构及其光电器件。该项目将使用分子束外延合成这些半导体,并将使用各种表征技术阐明其结构、电学和光学特性。的p型和n型掺杂的MgGaO的起源将通过详细的表征,包括霍尔效应,光致发光,X射线光电子能谱等揭示深紫外半导体激光器,发光二极管(LED)和光电探测器的波长小于270 nm将被制造和表征。这一结果将是半导体波导激光器发射波长(目前商用的375 nm)跨越当前边界的重要一步,这一重要进步将在许多技术领域带来重大的经济机会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianlin Liu其他文献

Fracture Prediction for an Advanced High-Strength Steel Sheet Using the Fully Coupled Elastoplastic Damage Model with Stress-State Dependence
使用具有应力状态依赖性的全耦合弹塑性损伤模型预测先进高强度钢板的断裂
  • DOI:
    10.1007/s10338-020-00185-w
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Kai Zhang;Mingchuan Wang;Weijie Liu;Jianlin Liu
  • 通讯作者:
    Jianlin Liu
Experimental Study of the Effect of the Quantum Well Structures on the Thermoelectric Figure of Merit in Si/Si 1- x Ge x System
量子阱结构对Si/Si 1- x Ge x 体系热电品质因数影响的实验研究
  • DOI:
    10.1557/proc-545-369
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. Sun;Jianlin Liu;S. Cronin;Kang L. Wang;Gang Chen;T. Koga;M. Dresselhaus
  • 通讯作者:
    M. Dresselhaus
Assessment of Four Serum Biochemical Markers in Elderly Patients with Vascular Dementia after Cerebral Infarction and Their Response to Donepezil and Idebenone
老年脑梗死后血管性痴呆患者四种血清生化指标的评估及其对多奈哌齐和艾地苯醌的反应
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianlin Liu;Qingyuan Li;Tao Peng;Qianwen Zhou;Bihua He;Bifeng Zhu
  • 通讯作者:
    Bifeng Zhu
Enhanced output power using MgZnO/ZnO/MgZnO double heterostructure in ZnO homojunction light-emitting diode
在 ZnO 同质结发光二极管中使用 MgZnO/ZnO/MgZnO 双异质结构增强输出功率
  • DOI:
    10.1117/12.877322
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Chu;Jianze Zhao;Z. Zuo;J. Kong;Lin Li;Jianlin Liu
  • 通讯作者:
    Jianlin Liu
The effect of the long-range order in a quantum dot array on the in-plane lattice thermal conductivity
量子点阵列中的长程有序对面内晶格​​热导率的影响
  • DOI:
    10.1006/spmi.2001.0981
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    A. Khitun;A. Balandin;Jianlin Liu;Kang L. Wang
  • 通讯作者:
    Kang L. Wang

Jianlin Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianlin Liu', 18)}}的其他基金

Collaborative Research: Studies of Electron Injection-Induced Effects in ZnO-based Materials and Device Structures
合作研究:ZnO基材料和器件结构中电子注入诱导效应的研究
  • 批准号:
    0900978
  • 财政年份:
    2009
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Materials World Network: Ordered Ge/Si Core-Shell Nanostructures for Nonvolatile Memory Applications
材料世界网络:用于非易失性存储器应用的有序 Ge/Si 核壳纳米结构
  • 批准号:
    0807232
  • 财政年份:
    2008
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
High-performance Hetero-nanocrystal Memories
高性能异质纳米晶体存储器
  • 批准号:
    0725630
  • 财政年份:
    2007
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
SGER: Scalability of Hetero-Nanocrystal Memory
SGER:异质纳米晶体存储器的可扩展性
  • 批准号:
    0622647
  • 财政年份:
    2006
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant

相似国自然基金

高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
  • 批准号:
    31471690
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
超高频超宽带系统射频基带补偿理论与技术的研究
  • 批准号:
    61001097
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
  • 批准号:
    60976066
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
  • 批准号:
    24K17312
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
FuSe-TG: Electro-Thermal Co-Design Center for Ultra-Wide Bandgap Semiconductor Devices
FuSe-TG:超宽带隙半导体器件电热协同设计中心
  • 批准号:
    2234479
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Research Project 2
研究项目2
  • 批准号:
    10403256
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
in situ Epigenetic Profiling of Single Cells in Kidney
肾脏单细胞的原位表观遗传分析
  • 批准号:
    10645605
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
REMARKABLE: Rural Environmental Monitoring via ultra wide-ARea networKs And distriButed federated LEarning
引人注目:通过超广域网和分布式联合学习进行农村环境监测
  • 批准号:
    EP/X039048/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Research Grant
Ultra-sensitive, unbiased, high-throughput, biochemical CHANGE-seq genome-wide activity and gRNA sequencing assays for therapeutic genome editing INDs
用于治疗性基因组编辑 IND 的超灵敏、无偏倚、高通量、生化 CHANGE-seq 全基因组活性和 gRNA 测序分析
  • 批准号:
    10668824
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
Rural Environmental Monitoring via ultra wide-ARea networKs And distriButed federated Learning
通过超广域网和分布式联合学习进行农村环境监测
  • 批准号:
    EP/X039021/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Research Grant
in situ Epigenetic Profiling of Single Cells in Kidney - Kim Diversity Supplement 2023
肾脏单细胞原位表观遗传分析 - Kim Diversity Supplement 2023
  • 批准号:
    10849346
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
Novel ultra-short cell free DNA biomarkers for early detection of non-small cell lung cancer.
用于早期检测非小细胞肺癌的新型超短无细胞 DNA 生物标志物。
  • 批准号:
    10730508
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
Dissecting enhancer-promoter looping and gene induction dynamics in differentiation
剖析分化过程中的增强子-启动子循环和基因诱导动态
  • 批准号:
    10642028
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了