Dynamic Optical Studies of Transport Phenomena Associated with Melting and Recrystallization at the Nanoparticle-Ice Interface

与纳米颗粒-冰界面熔化和再结晶相关的输运现象的动态光学研究

基本信息

  • 批准号:
    2107664
  • 负责人:
  • 金额:
    $ 43.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

With support from the Macromolecular, Supramolecular, and Nanochemistry (MSN) Program in the Division of Chemistry, Professor Bogdan Dragnea at Indiana University is utilizing sophisticated microscopies to study how nanoparticles affect ice melting. It is well-know that ice melts to form water when the temperature reaches 32 degrees Fahrenheit, or 0 degrees Celsius. However, this is not always the case. Nanoparticles, which are about a million times smaller than the period at the end of this sentence, can change this transition temperature. When embedded in ice, a thin layer often forms near the nanoparticle surface that can melt below normal temperatures. Working with his students, Professor Dragnea uses a photothermal microscopy technique to observe the melting of this thin ice layer when the nanoparticle is rapidly heated by a laser. Their discoveries could have implications for understanding a variety of environmental processes such as ice crystal formation in the atmosphere, as well as provide ways of controlling friction and adhesion on icy surfaces. The project is also providing research opportunities for graduate and undergraduate students from diverse backgrounds. In addition, through collaboration with the Indiana University Research and Technology Corporation (IURTC), Professor Dragnea is introducing his students to entrepreneurial concepts as they translate the project's instrumentation and scientific knowledge into useable technologies. Professor Dragnea is developing photothermal microscopy methods to obtain the transport and thermodynamic properties of the interfacial quasi-liquid layer (QLL) that separates the solid surface of a nanoparticle from bulk ice. Single nanoparticles with well-defined surface chemistries and geometries are embedded in a film of polycrystalline ice. The nanoparticle is then heated by laser excitation, raising the temperature of the surrounding solid. The formation of the QLL is detected by measuring the light scattered by the nanoparticle at various temperatures. The measurement is facilitated by modulation of the interfacial liquid thickness through repeated absorption of laser pulses by the nanoparticle. In addition to characterizing the convex surfaces of spherical nanoparticles, the formation of the QLL near concave surfaces of shape-controlled nanoparticles is also studied. By comparing optical and thermal simulations to experimental observations, transport and thermodynamic parameters are extracted. Experiments performed on individual particles alleviate challenges associated with impurities, defects, and particle-to-particle variations that reduce accuracy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系大分子、超分子和纳米化学(MSN)项目的支持下,印第安纳州大学的Bogdan Dragnea教授正在利用先进的显微镜研究纳米颗粒如何影响冰的融化。众所周知,当温度达到32华氏度或0摄氏度时,冰融化形成水。然而,情况并非总是如此。纳米粒子,比这句话末尾的句号小一百万倍,可以改变这个转变温度。当嵌入冰中时,通常在纳米颗粒表面附近形成一层薄层,该薄层可以在正常温度以下熔化。Dragnea教授与他的学生一起工作,使用光热显微镜技术观察当纳米颗粒被激光快速加热时,薄冰层的融化。他们的发现可能对理解各种环境过程(如大气中的冰晶形成)产生影响,并提供控制冰表面摩擦和粘附的方法。该项目还为来自不同背景的研究生和本科生提供研究机会。此外,通过与印第安纳州大学研究和技术公司(IURTC)的合作,Dragnea教授正在向他的学生介绍创业概念,因为他们将项目的仪器和科学知识转化为可用的技术。Dragnea教授正在开发光热显微镜方法,以获得将纳米颗粒的固体表面与大块冰分离的界面准液体层(QLL)的传输和热力学性质。具有明确的表面化学和几何形状的单个纳米颗粒嵌入多晶冰膜中。 然后通过激光激发加热纳米颗粒,提高周围固体的温度。QLL的形成通过测量在各种温度下由纳米颗粒散射的光来检测。通过纳米颗粒对激光脉冲的重复吸收来调制界面液体厚度,从而促进测量。除了表征球形纳米颗粒的凸面外,还研究了形状控制纳米颗粒的凹面附近的QLL的形成。通过比较光学和热模拟实验观察,运输和热力学参数提取。对单个颗粒进行的实验减轻了与杂质、缺陷和颗粒间变化相关的挑战,这些挑战降低了准确性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-Time Optical Measurements of Nanoparticle-Induced Melting and Resolidification Dynamics
纳米颗粒引起的熔化和再凝固动力学的实时光学测量
  • DOI:
    10.1021/acsnano.2c09212
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Jo, Suhun;Schaich, William L.;Dragnea, Bogdan
  • 通讯作者:
    Dragnea, Bogdan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bogdan Dragnea其他文献

Establishing the role of structure and dynamics in radiation brightening from super-fluorescent virus-like particles
  • DOI:
    10.1016/j.bpj.2023.11.3311
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Rasanjali L. Ranawaka;Peter Eugene Jones;Bogdan Dragnea;Jodi A. Hadden-Perilla
  • 通讯作者:
    Jodi A. Hadden-Perilla
Studies of self-assembly of virus-like particles
  • DOI:
    10.1016/j.nano.2006.10.078
  • 发表时间:
    2006-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Bogdan Dragnea
  • 通讯作者:
    Bogdan Dragnea
Unnatural life
不自然的生活
  • DOI:
    10.1038/nmat2108
  • 发表时间:
    2008-02-01
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Bogdan Dragnea
  • 通讯作者:
    Bogdan Dragnea
Photoacoustic Spectroscopy Of Virus-like Particles And Virus Crystals
  • DOI:
    10.1016/j.bpj.2008.12.2166
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher C. DuFort;Bogdan Dragnea
  • 通讯作者:
    Bogdan Dragnea

Bogdan Dragnea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bogdan Dragnea', 18)}}的其他基金

Collaborative Research: Room-temperature Superfluorescence in Multi-fluorophore Protein Cages and Its Origins
合作研究:多荧光团蛋白笼中的室温超荧光及其起源
  • 批准号:
    2232717
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Super-radiant virus-like particles as targeted contrast agents for laser-guided surgery
超辐射病毒样颗粒作为激光引导手术的靶向造影剂
  • 批准号:
    1803440
  • 财政年份:
    2018
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Dynamics of Nanoparticle-Assisted Melting and Recrystallization of Water Ice
纳米颗粒辅助水冰熔化和重结晶的动力学
  • 批准号:
    1808027
  • 财政年份:
    2018
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
EAGER: Super-radiant Virus-like Particles
EAGER:超辐射病毒样颗粒
  • 批准号:
    1740432
  • 财政年份:
    2017
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
2011 Physical Virology Gordon-Keenan Research Seminar and the Gordon Research Conference
2011年物理病毒学戈登-基南研究研讨会和戈登研究会议
  • 批准号:
    1061223
  • 财政年份:
    2010
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Virus-based 3D Metallodielectric Materials
基于病毒的 3D 金属介电材料
  • 批准号:
    0705384
  • 财政年份:
    2007
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
NER: Studies of subwavelength photonic force actuators
NER:亚波长光子力致动器的研究
  • 批准号:
    0708590
  • 财政年份:
    2007
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
SGER: Nanoparticle Core Virus-like Particles for Intracellular Probing
SGER:用于细胞内探测的纳米核心病毒样颗粒
  • 批准号:
    0631982
  • 财政年份:
    2006
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Biophotonics: In-vitro single-virus near-field spectroscopy
生物光子学:体外单病毒近场光谱学
  • 批准号:
    0322767
  • 财政年份:
    2003
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant

相似海外基金

In-vivo studies for a quantum optical non-invasive glucose sensor
量子光学非侵入式葡萄糖传感器的体内研究
  • 批准号:
    10105375
  • 财政年份:
    2024
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Launchpad
AFM and Optical Studies of Boron Nitride and Graphene Grown By High Temperature Molecular Beam Epitaxy
高温分子束外延生长氮化硼和石墨烯的 AFM 和光学研究
  • 批准号:
    2884050
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Studentship
Advanced Astronomical Instrumentation and Observational Studies of Early Supernovae, Optical Transients and Dwarf Galaxies
先进的天文仪器和早期超新星、光学瞬变和矮星系的观测研究
  • 批准号:
    RGPIN-2019-06524
  • 财政年份:
    2022
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: MOSAiC Sea Ice Samples for Stratigraphy, Microstructure, and Inherent Optical Property Studies
合作研究:用于地层学、微观结构和固有光学特性研究的 MOSAiC 海冰样本
  • 批准号:
    2143546
  • 财政年份:
    2022
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: MOSAiC Sea ice Samples for Stratigraphy, Microstructure, and Inherent Optical Property Studies
合作研究:用于地层学、微观结构和固有光学特性研究的 MOSAiC 海冰样本
  • 批准号:
    2143547
  • 财政年份:
    2022
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
High bandwidth power supplies for optical pumping of francium atoms for atomic parity violation studies
用于钫原子光泵浦的高带宽电源,用于原子宇称违反研究
  • 批准号:
    SAPEQ-2021-00005
  • 财政年份:
    2021
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Subatomic Physics Envelope - Research Tools and Instruments
Studies of structure and optical properties for a single metallic nano-particle suspended by a contactless sample holder
非接触式样品架悬浮的单一金属纳米颗粒的结构和光学性质研究
  • 批准号:
    21K04845
  • 财政年份:
    2021
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Lightning Studies Based on Measurements Spanning the Ranges from Radio Frequency to Optical (including Infrared and Ultraviolet) to Gamma-Rays
基于从射频到光学(包括红外线和紫外线)再到伽马射线的测量的闪电研究
  • 批准号:
    2114471
  • 财政年份:
    2021
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Quantum Dynamical Studies of Time-resolved Nonlinear Optical Signals from Spatially Oriented Electronic Energy Transfer Complexes
空间定向电子能量传输复合物的时间分辨非线性光信号的量子动力学研究
  • 批准号:
    2102013
  • 财政年份:
    2021
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Combined Optical Tweezers-Fluorescence Super-Resolution Microscope for Single-Molecule Biophysical Studies
用于单分子生物物理研究的光镊-荧光超分辨率组合显微镜
  • 批准号:
    10177000
  • 财政年份:
    2021
  • 资助金额:
    $ 43.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了