RAPID: Real-time Forecasting Models for Hospitalizations of Infectious Disease in the USA

RAPID:美国传染病住院实时预测模型

基本信息

  • 批准号:
    2333435
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

COVID-19 brought to light the extent to which infectious disease outbreaks can result in a significant burden on the healthcare system and societies in general. In order to support planning and decision-making efforts during periods of high disease transmission, expected disease burden and transmission patterns must be understood. This project will develop hospitalization forecasting models for the United States that exploit novel, high resolution publicly available data sets, namely waste water and genomic surveillance data, alongside more traditional epidemiological, mobility, demographic, socioeconomic, and behavioral data. These models will be designed to accurately assess the expected burden on local healthcare systems for cities in the United States, complementing the state and national level modeling frameworks that currently exist. A diverse group of students will lead the model development and dissemination of the results to the CDC through the COVID-19 Forecast Hub for COVID-19 and FluSight for Influenza, further expanding upon the established academic-government partnership. The publicly accessible submissions and ensemble forecast produced will serve to both enhance societies general understanding of infectious disease risk, and help improve science translation and literacy among the general public.The hospitalization forecasting models will utilize both mechanistic modeling and statistical data-driven approaches that combine disparate data inputs into meaningful predictive frameworks. This work will include the development of novel modeling techniques to further improve predictive capabilities. The high resolution, i.e., community and city-level, nature of the models will fill a gap in both the literature and practice, which to-date is dominate by state and national level forecasts. The highly local, more actionable spatial scales will both increase the utility of our models in practice, and provide a mechanism for local officials to distinguish harm across population groups, enabling more fair and equitable policy guidance for decision makers. The development of novel evaluation metrics that explicitly consider problem context will further increase the utility of our models, and offer a new set of performance tools to the broader modeling community. In the long term, our systems engineering approach to this research effort will contribute to the establishment of a robust, vetted set of tools that can be used for forecasting across a range of variables, during both seasonal cycles of respiratory viral disease and pandemic periods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新冠肺炎揭示了传染病暴发可能在多大程度上给医疗保健系统和一般社会造成重大负担。为了在疾病高传播期支持规划和决策工作,必须了解预期的疾病负担和传播模式。该项目将为美国开发住院预测模型,该模型利用新的、高分辨率的公开数据集,即废水和基因组监测数据,以及更传统的流行病学、流动性、人口统计学、社会经济和行为数据。这些模型的设计将准确评估美国城市对当地医疗系统的预期负担,补充目前存在的州和国家层面的建模框架。一批不同的学生将领导模型开发并通过新冠肺炎流感预测中心将结果传播给疾控中心,进一步扩大已建立的学术和政府合作伙伴关系。可供公众查阅的意见书和综合预测将有助于提高社会对传染病风险的普遍了解,并有助于提高公众的科学翻译和素养。住院预测模型将利用机械建模和统计数据驱动的方法,将不同的数据输入结合到有意义的预测框架中。这项工作将包括开发新的建模技术,以进一步提高预测能力。模式的高分辨率,即社区和城市一级的性质,将填补文献和实践中的空白,迄今为止,这一空白是由州和国家一级的预测主导的。高度地方性的、更具可操作性的空间尺度将增加我们的模型在实践中的实用性,并为地方官员提供一种机制,以区分不同人口群体的危害,为决策者提供更公平和公平的政策指导。明确考虑问题背景的新型评估指标的开发将进一步增加我们模型的实用性,并为更广泛的建模社区提供一套新的性能工具。从长远来看,我们对这项研究工作的系统工程方法将有助于建立一套强大的、经过审查的工具,可用于在呼吸道病毒疾病的季节性周期和大流行期间对一系列变量进行预测。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lauren Gardner其他文献

Training Law Enforcement Officers About Autism: Evaluation of Adding Virtual Reality or Simulation to a Traditional Training Approach
The Psychotherapy Experience of Pagans: a Narrative Phenomenological Inquiry.
异教徒的心理治疗经验:叙事现象学探究。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lauren Gardner
  • 通讯作者:
    Lauren Gardner
Snapshots of acyl carrier protein shuttling in human fatty acid synthase
人脂肪酸合酶中酰基载体蛋白穿梭的快照
  • DOI:
    10.1038/s41586-025-08587-x
  • 发表时间:
    2025-02-20
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Kollin Schultz;Pedro Costa-Pinheiro;Lauren Gardner;Laura V. Pinheiro;Julio Ramirez-Solis;Sarah M. Gardner;Kathryn E. Wellen;Ronen Marmorstein
  • 通讯作者:
    Ronen Marmorstein
Exploring a diverse set of specifications related to associations between adolescent smoking, vaping, and emotional problems: a multiverse analysis
探索一系列与青少年吸烟、吸电子烟和情绪问题之间的关联相关的不同规范:一项多元宇宙分析
  • DOI:
    10.1016/j.addbeh.2025.108380
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Jillian Halladay;Rachel Visontay;Matthew Sunderland;Amy-Leigh Rowe;Scarlett Smout;Emma Devine;Emily Stockings;Jack L. Andrews;Katrina E. Champion;Lauren Gardner;Nicola Newton;Maree Teesson;Tim Slade
  • 通讯作者:
    Tim Slade
Law enforcement officers’ interactions with autistic individuals: Commonly reported incidents and use of force
  • DOI:
    10.1016/j.ridd.2022.104371
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lauren Gardner;Charles Cederberg;Jason Hangauer;Jonathan M. Campbell
  • 通讯作者:
    Jonathan M. Campbell

Lauren Gardner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lauren Gardner', 18)}}的其他基金

RAISE: IHBEM: Modeling Dynamic Disease-Behavior Feedbacks for Improved Epidemic Prediction and Response
RAISE:IHBEM:对动态疾病行为反馈进行建模以改进流行病预测和应对
  • 批准号:
    2229996
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
RAPID: Real-time Forecasting of COVID-19 risk in the USA
RAPID:美国 COVID-19 风险的实时预测
  • 批准号:
    2108526
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: Development of an Interactive Web-based Dashboard to Track COVID-19 in Real-time
RAPID:开发基于网络的交互式仪表板来实时跟踪 COVID-19
  • 批准号:
    2028604
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Workshop on Emerging Technologies for Integrated Surveillance and Diagnosis of Infectious Disease and Bio-Secuity Threats; March, 2020; Johns Hopkins Center for Health Security
传染病和生物安全威胁综合监测和诊断新兴技术研讨会;
  • 批准号:
    1947492
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
  • 批准号:
    60608018
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Rapid Acute Leukemia Genomic Profiling with CRISPR enrichment and Real-time long-read sequencing
利用 CRISPR 富集和实时长读长测序进行快速急性白血病基因组分析
  • 批准号:
    10651543
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Rapid Acute Leukemia Genomic Profiling with CRISPR enrichment and Real-time long-read sequencing
利用 CRISPR 富集和实时长读长测序进行快速急性白血病基因组分析
  • 批准号:
    10839678
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Development of a handheld rapid air sensing system to monitor and quantify SARS-CoV-2 in aerosols in real-time
开发手持式快速空气传感系统,实时监测和量化气溶胶中的 SARS-CoV-2
  • 批准号:
    10854070
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Ultra-Rapid RF-Based Beam Monitor for Real-Time FLASH Beam Control
用于实时闪光光束控制的基于射频的超快速光束监视器
  • 批准号:
    10714368
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
RAPID: ReAl-time Process ModellIng and Diagnostics: Powering Digital Factories
RAPID:实时过程建模和诊断:为数字工厂提供动力
  • 批准号:
    EP/V02860X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
RAPID: ReAl-time Process ModellIng and Diagnostics: Powering Digital Factories
RAPID:实时过程建模和诊断:为数字工厂提供动力
  • 批准号:
    EP/V028618/1
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Rapid, High-Throughput, and Real-time Assessment of Antibiotic Effectiveness against Pathogenic Biofilms
快速、高通量、实时评估抗生素对致病性生物膜的有效性
  • 批准号:
    2100757
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: Real-time Forecasting of COVID-19 risk in the USA
RAPID:美国 COVID-19 风险的实时预测
  • 批准号:
    2108526
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Liquid Biopsy for Rapid Detection and Real Time Monitoring of FGFR-altered Cancers
液体活检用于快速检测和实时监测 FGFR 改变的癌症
  • 批准号:
    10922903
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
Development of a handheld rapid air sensing system to monitor and quantify SARS-CoV-2 in aerosols in real-time
开发手持式快速空气传感系统,实时监测和量化气溶胶中的 SARS-CoV-2
  • 批准号:
    10273983
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了