RAPID: Real-time Forecasting Models for Hospitalizations of Infectious Disease in the USA

RAPID:美国传染病住院实时预测模型

基本信息

  • 批准号:
    2333435
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

COVID-19 brought to light the extent to which infectious disease outbreaks can result in a significant burden on the healthcare system and societies in general. In order to support planning and decision-making efforts during periods of high disease transmission, expected disease burden and transmission patterns must be understood. This project will develop hospitalization forecasting models for the United States that exploit novel, high resolution publicly available data sets, namely waste water and genomic surveillance data, alongside more traditional epidemiological, mobility, demographic, socioeconomic, and behavioral data. These models will be designed to accurately assess the expected burden on local healthcare systems for cities in the United States, complementing the state and national level modeling frameworks that currently exist. A diverse group of students will lead the model development and dissemination of the results to the CDC through the COVID-19 Forecast Hub for COVID-19 and FluSight for Influenza, further expanding upon the established academic-government partnership. The publicly accessible submissions and ensemble forecast produced will serve to both enhance societies general understanding of infectious disease risk, and help improve science translation and literacy among the general public.The hospitalization forecasting models will utilize both mechanistic modeling and statistical data-driven approaches that combine disparate data inputs into meaningful predictive frameworks. This work will include the development of novel modeling techniques to further improve predictive capabilities. The high resolution, i.e., community and city-level, nature of the models will fill a gap in both the literature and practice, which to-date is dominate by state and national level forecasts. The highly local, more actionable spatial scales will both increase the utility of our models in practice, and provide a mechanism for local officials to distinguish harm across population groups, enabling more fair and equitable policy guidance for decision makers. The development of novel evaluation metrics that explicitly consider problem context will further increase the utility of our models, and offer a new set of performance tools to the broader modeling community. In the long term, our systems engineering approach to this research effort will contribute to the establishment of a robust, vetted set of tools that can be used for forecasting across a range of variables, during both seasonal cycles of respiratory viral disease and pandemic periods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Covid-19揭示了传染病暴发可能导致医疗保健系统和整个社会的重担。为了支持高疾病传播期间的计划和决策工作,必须了解预期的疾病负担和传播模式。该项目将为美国开发住院预测模型,以利用新颖的,高分辨率的公开数据集,即浪费水和基因组监测数据,以及更传统的流行病学,流动性,人口统计学,社会经济和行为数据。这些模型将旨在准确评估美国城市的当地医疗保健系统的预期负担,以补充目前存在的州和国家级建模框架。一群不同的学生将通过COVID-19的Covid-19和Flusight的COVID预测中心和流感的Flusight进行模型开发和将结果传播给CDC,并进一步扩展了既定的学术政府合作伙伴关系。公开访问的提交和制作的整体预测将有助于增强社会对感染性疾病风险的一般理解,并有助于提高公众的科学翻译和识字率。住院预测模型将利用机械模型和统计数据驱动的方法,以将差异数据输入结合到有意义的预测框架中。这项工作将包括开发新型建模技术,以进一步提高预测能力。高分辨率,即社区和城市层面,模型的性质将填补文献和实践的差距,迄今为止,这是由州和国家一级的预测所占据主导地位的。高度局部,更可行的空间尺度都将增加我们在实践中模型的效用,并为地方官员提供了区分跨人群危害的机制,从而为决策者提供了更公平,公平的政策指导。明确考虑问题上下文的新颖评估指标的开发将进一步增加我们的模型的效用,并为更广泛的建模社区提供一套新的绩效工具。从长远来看,我们进行研究工作的系统工程方法将有助于建立可靠的,可用于跨多个变量的预测,在呼吸道病毒疾病和大流行期的季节性周期中,该工具可用于预测,这奖项反映了NSF的法定范围,反映了通过评估范围的支持者的支持者,并已被评估范围的商品范围和众所周知的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lauren Gardner其他文献

The Psychotherapy Experience of Pagans: a Narrative Phenomenological Inquiry.
异教徒的心理治疗经验:叙事现象学探究。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lauren Gardner
  • 通讯作者:
    Lauren Gardner
Law enforcement officers’ interactions with autistic individuals: Commonly reported incidents and use of force
  • DOI:
    10.1016/j.ridd.2022.104371
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lauren Gardner;Charles Cederberg;Jason Hangauer;Jonathan M. Campbell
  • 通讯作者:
    Jonathan M. Campbell
Psychology and Developmental-Behavioral Pediatrics: Interprofessional Collaboration in Clinical Practice.
心理学和发育行为儿科:临床实践中的跨专业合作。
Progressive cone dystrophy, nystagmus and contact lenses.
进行性视锥细胞营养不良、眼球震颤和隐形眼镜。
24.3 Internet-Based Prevention for Alcohol and Other Drugs: An Overview of the Universal Climate Schools Prevention Programs
  • DOI:
    10.1016/j.jaac.2018.07.153
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lauren Gardner
  • 通讯作者:
    Lauren Gardner

Lauren Gardner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lauren Gardner', 18)}}的其他基金

RAISE: IHBEM: Modeling Dynamic Disease-Behavior Feedbacks for Improved Epidemic Prediction and Response
RAISE:IHBEM:对动态疾病行为反馈进行建模以改进流行病预测和应对
  • 批准号:
    2229996
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
RAPID: Real-time Forecasting of COVID-19 risk in the USA
RAPID:美国 COVID-19 风险的实时预测
  • 批准号:
    2108526
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: Development of an Interactive Web-based Dashboard to Track COVID-19 in Real-time
RAPID:开发基于网络的交互式仪表板来实时跟踪 COVID-19
  • 批准号:
    2028604
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Workshop on Emerging Technologies for Integrated Surveillance and Diagnosis of Infectious Disease and Bio-Secuity Threats; March, 2020; Johns Hopkins Center for Health Security
传染病和生物安全威胁综合监测和诊断新兴技术研讨会;
  • 批准号:
    1947492
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

己酸二元发酵体系中甲烷菌促进己酸生成的机制研究
  • 批准号:
    31501461
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
多维马氏体的数学建模及其高精度数值模拟方法
  • 批准号:
    11171218
  • 批准年份:
    2011
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
体数据表达与绘制的新方法研究
  • 批准号:
    61170206
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
mRNA推断皮肤损伤时间的多因子与多因素实验研究
  • 批准号:
    81172902
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于孢子捕捉器和实时定量PCR技术的空气中小麦白粉菌的监测技术研究
  • 批准号:
    31171793
  • 批准年份:
    2011
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

Rapid detection of environmental RNA and absolute quantification using internal strand RNA
使用内链 RNA 快速检测环境 RNA 并进行绝对定量
  • 批准号:
    22KJ0945
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Field Instrument for Assessment of Arsenic Exposure
砷暴露评估现场仪器
  • 批准号:
    10484041
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Physics-informed Machine Learning approach for a selective, sensitive, and rapid sensor for detecting unsafe levels of carcinogenic/toxic VOCs
基于物理的机器学习方法,用于选择性、灵敏且快速的传感器,用于检测致癌/有毒 VOC 的不安全水平
  • 批准号:
    10600819
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Rapid Acute Leukemia Genomic Profiling with CRISPR enrichment and Real-time long-read sequencing
利用 CRISPR 富集和实时长读长测序进行快速急性白血病基因组分析
  • 批准号:
    10651543
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Rapid Acute Leukemia Genomic Profiling with CRISPR enrichment and Real-time long-read sequencing
利用 CRISPR 富集和实时长读长测序进行快速急性白血病基因组分析
  • 批准号:
    10839678
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了