Deep Learning Accelerated Inverse Design of Lab-Scale Energy Efficient Heterojunctions for Wide-Bandgap Devices

宽带隙器件实验室规模节能异质结的深度学习加速逆向设计

基本信息

  • 批准号:
    2110033
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Efficient and reliable wide-bandgap high power transistors based on group III-nitrides (GaN, AlN, InN, etc.) are increasingly needed in today’s most demanding industries such as electric vehicles, data centers, radars, and consumer electronics. The functions of these systems rely heavily on the efficiency of removing excess heat from the devices’ active area, which is composed of function materials, substrates, and associated interfaces and heterojunctions, the dominant factor determining the overall interfacial thermal resistance (ITR) of the devices. Therefore, appropriate design and manufacturing of corresponding interfaces with minimized ITR are crucial to developing next-generation wide-bandgap devices. However, due to the immense search space of interfacial structures, it is impractical to evaluate all potential interfacial configurations using current trail-and-error experimental or computational approaches. One of the promising strategies is to use machine learning techniques, which are transforming the engineering field spanning from property predictions to inverse design. The overarching goal of this project is to develop novel deep neural network algorithms and workflow for the inverse design of lab-scale tailored interfacial structures to realize thermally efficient high-power wide-bandgap devices, along with experimental validation and demonstration. The success of this project will provide computational design tools and experimental fabrication protocols, not only to facilitate disruptive developments of key high-power electronic systems by breaking the bottleneck of thermal inefficiency issue, but also to speed up the material-to-industry processes. The project offers a unified platform to promote interdisciplinary collaborations spanning computational thermal science, experimental physics, and data science. The developed algorithms would benefit all engineers who study structure-device property relationships. This project will also increase public understanding and appreciation of machine learning for accelerating structure discovery and inspiring young researchers to pursue careers in STEM. Minority graduate students will get involved and trained in this interdisciplinary research project to strengthen high quality workforce in STEM.Aiming to address the main obstacles in the inverse design of heterojunctions for thermally efficient III-nitrides transistor devices, a set of key deep learning based techniques in the full inverse design pipeline will be developed: (1) deep neural network potentials will be developed, for calculating interatomic force constants to accurately and efficiently deal with large number of compositions with hundreds to thousands of nano-scale interfaces via nonequilibrium Green’s function method, which is not feasible for other traditional computational approaches. This will be facilitated by using frequency-resolved phonon transmission coefficient curves as the learning target in neural network training, which is the dominant factor in determining desired ITR across the functional interface or heterojunction and is unique for specific interface and provides more detailed hidden information of interfacial phonon transport. (2) powerful deep learning and spatial deep convolutional neural networks will be exploited in order to learn the features of phonon transmission curves and then unravel the complex, nonlinear, and usually implicit relationship between atomic structures of heterostructures and interfacial thermal resistance. (3) Genetic algorithms and the newest generative adversarial networks for the inverse design of hypothetical interfaces or heterojunctions will be developed. (4) A versatile and state-of-the-art technique, namely pulsed laser deposition, will be used to synthesize atomically thin films that have been theoretically proposed, with thickness approaching a monolayer, and their ITR will be validated. By combining computational thermal science with data science and experiment teams, this project will transform the study of complex interfacial thermal transport process using deep learning strategy and significantly accelerate the exploration process for optimal interfacial structures to achieve best thermal management performance and thus spur the practical implementation in semiconductor industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于III族氮化物(GaN、AlN、InN等)的高效可靠的宽带隙高功率晶体管如今,电动汽车、数据中心、雷达和消费电子产品等要求最高的行业越来越需要这种传感器。这些系统的功能在很大程度上依赖于从器件的有源区去除多余热量的效率,该有源区由功能材料、衬底以及相关的界面和异质结组成,这是决定器件的整体界面热阻(ITR)的主导因素。因此,适当的设计和制造相应的接口与最小的ITR是至关重要的开发下一代宽带隙器件。然而,由于界面结构的搜索空间巨大,使用当前的试错实验或计算方法来评估所有潜在的界面配置是不切实际的。其中一个很有前途的策略是使用机器学习技术,这将工程领域从属性预测转变为逆向设计。该项目的首要目标是开发新的深度神经网络算法和工作流程,用于实验室规模定制界面结构的逆向设计,以实现热效率高功率宽带隙器件,沿着实验验证和演示。该项目的成功将提供计算设计工具和实验制造协议,不仅通过打破热效率问题的瓶颈来促进关键大功率电子系统的颠覆性发展,而且还将加快材料到工业的过程。该项目提供了一个统一的平台,以促进跨学科的合作,包括计算热科学,实验物理和数据科学。所开发的算法将有利于所有研究结构-器件性能关系的工程师。该项目还将提高公众对机器学习的理解和欣赏,以加速结构发现,并激励年轻研究人员从事STEM职业。少数民族研究生将参与并培训这个跨学科的研究项目,以加强STEM领域的高素质劳动力。为了解决热效率III族氮化物晶体管器件异质结逆向设计的主要障碍,将开发一套完整逆向设计管道中基于深度学习的关键技术:(1)将开发深度神经网络势,用于通过非平衡绿色函数方法计算原子间力常数,以准确和有效地处理具有数百至数千个纳米尺度界面的大量组合物,这对于其它传统的计算方法是不可行的。这将通过使用频率分辨的声子传输系数曲线作为神经网络训练中的学习目标来促进,这是确定跨功能界面或异质结的期望ITR的主导因素,并且对于特定界面是唯一的,并且提供界面声子传输的更详细的隐藏信息。(2)将利用强大的深度学习和空间深度卷积神经网络来学习声子传输曲线的特征,然后解开异质结构的原子结构与界面热阻之间复杂的、非线性的且通常隐含的关系。(3)将开发用于假设界面或异质结的逆向设计的遗传算法和最新的生成对抗网络。(4)一个通用的和国家的最先进的技术,即脉冲激光沉积,将被用来合成原子薄膜,理论上已经提出,厚度接近单层,和他们的ITR将得到验证。通过将计算热科学与数据科学和实验团队相结合,该项目将利用深度学习策略改变复杂界面热输运过程的研究,并显著加快探索最佳界面结构的过程,以实现最佳热管理性能,从而推动半导体行业的实际实施。该奖项反映了NSF的法定使命,值得支持通过使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Material transformers: deep learning language models for generative materials design
High-throughput computation of novel ternary B–C–N structures and carbon allotropes with electronic-level insights into superhard materials from machine learning
  • DOI:
    10.1039/d1ta07553e
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Mohammed Al-Fahdi;T. Ouyang;Ming Hu
  • 通讯作者:
    Mohammed Al-Fahdi;T. Ouyang;Ming Hu
TCSP: a Template-Based Crystal Structure Prediction Algorithm for Materials Discovery
  • DOI:
    10.1021/acs.inorgchem.1c03879
  • 发表时间:
    2022-06-06
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Wei, Lai;Fu, Nihang;Hu, Jianjun
  • 通讯作者:
    Hu, Jianjun
Unlocking phonon properties of a large and diverse set of cubic crystals by indirect bottom-up machine learning approach
  • DOI:
    10.1038/s43246-023-00390-3
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Alejandro Rodriguez;Changpeng Lin;Chen Shen;Kunpeng Yuan;Mohammed Al-Fahdi;Xiaoliang Zhang;Hongbin Zhang;Ming Hu
  • 通讯作者:
    Alejandro Rodriguez;Changpeng Lin;Chen Shen;Kunpeng Yuan;Mohammed Al-Fahdi;Xiaoliang Zhang;Hongbin Zhang;Ming Hu
Predicting lattice thermal conductivity from fundamental material properties using machine learning techniques
使用机器学习技术根据基本材料特性预测晶格热导率
  • DOI:
    10.1039/d2ta08721a
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Qin, Guangzhao;Wei, Yi;Yu, Linfeng;Xu, Jinyuan;Ojih, Joshua;Rodriguez, Alejandro David;Wang, Huimin;Qin, Zhenzhen;Hu, Ming
  • 通讯作者:
    Hu, Ming
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ming Hu其他文献

マスコットロボットを活用したテクノストレス解消の研究
利用吉祥物机器人缓解技术压力的研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ming Hu;Keiji Emi;須藤匠,猿田和樹,寺田裕樹,陳国躍;荒木亮磨,土肥紳一
  • 通讯作者:
    荒木亮磨,土肥紳一
Engineering Poly(ethylene glycol) Nanoparticles for Accelerated Blood Clearance Inhibition and Targeted Drug Delivery
用于加速血液清除抑制和靶向药物输送的工程聚乙二醇纳米颗粒
  • DOI:
    10.1021/jacs.2c06877
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Yuan Tian;Zhiliang Gao;Ning Wang;Ming Hu;Yi Ju;Qiang Li;Frank Caruso;Jingcheng Hao;Jiwei Cui
  • 通讯作者:
    Jiwei Cui
High molecular weight polymeric acceptors based on semi-perfluoroalkylated perylene diimides for pseudo-planar heterojunction all-polymer organic solar cells
用于伪平面异质结全聚合物有机太阳能电池的基于半全氟烷基化苝二酰亚胺的高分子量聚合物受体
  • DOI:
    10.1016/j.polymer.2022.125114
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Lei Wang;Ming Hu;Youdi Zhang;Zhongyi Yuan;Yu Hu;Xiaohong Zhao;Yiwang Chen
  • 通讯作者:
    Yiwang Chen
Integrative analyses of multi-tissue Hi-C and eQTL data demonstrate close spatial proximity between eQTLs and their target genes
多组织 Hi-C 和 eQTL 数据的综合分析表明 eQTL 与其靶基因之间具有紧密的空间接近性
  • DOI:
    10.1101/392266
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingting Yu;Ming Hu;Chun Li
  • 通讯作者:
    Chun Li
A simple strategy to tailor the microstructure and wear-resistance of sputtered WS2 films
定制溅射 WS2 薄膜微观结构和耐磨性的简单策略
  • DOI:
    10.1016/j.matlet.2018.01.027
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Shusheng Xu;Ming Hu;Jiayi Sun;Lijun Weng;Weimin Liu;Xiaoming Gao
  • 通讯作者:
    Xiaoming Gao

Ming Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ming Hu', 18)}}的其他基金

PFI (MCA): Embodied Carbon Emission and Environmental Impact from Built Environment
PFI (MCA):建筑环境的隐含碳排放和环境影响
  • 批准号:
    2317971
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Phonon Database Generation, Analysis, and Visualization for Data Driven Materials Discovery
协作研究:要素:数据驱动材料发现的声子数据库生成、分析和可视化
  • 批准号:
    2311202
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 2 Acquisition of a High-Performance Computing Cluster for Boosting Artificial Intelligence Enabled Science, Engineering, and Education in South Carolina
设备: MRI:第二轨道收购高性能计算集群,以促进南卡罗来纳州人工智能支持的科学、工程和教育
  • 批准号:
    2320292
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Thermal Transport in Dynamically Disordered Materials with Frustrated Energy Landscape
能量景观受挫的动态无序材料中的热传输
  • 批准号:
    2030128
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Workshop on "Health in Buildings for Today and Tomorrow"
合作研究:“今天和明天的建筑健康”研讨会
  • 批准号:
    1746081
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Accelerated discovery of ultra-fast ionic conductors with machine learning
通过机器学习加速超快离子导体的发现
  • 批准号:
    24K08582
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Understanding and Preparation for Machine learning for Accelerated Carbonation Technology Pelletisation Process - Carbon8
加速碳酸化技术造粒过程的机器学习的理解和准备的发展 - Carbon8
  • 批准号:
    10091589
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Collaborative R&D
Human models for accelerated robot learning and human-robot interaction
用于加速机器人学习和人机交互的人体模型
  • 批准号:
    DP240101458
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Discovery Projects
Elements: Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
元素:FPGA 加速云网络基础设施上同态加密机器学习的便携式库
  • 批准号:
    2311870
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
  • 批准号:
    2886357
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Studentship
Development of Artificial Intelligence and Machine learning for Accelerated Carbonation Technology - Carbon8
加速碳酸化技术的人工智能和机器学习的开发 - Carbon8
  • 批准号:
    10074780
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Collaborative R&D
CAREER: Scalable monolithic integration of Graphene/MoS2/Graphene artificial neurons and synapses for accelerated machine learning
职业:石墨烯/MoS2/石墨烯人工神经元和突触的可扩展整体集成,用于加速机器学习
  • 批准号:
    2324651
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Accelerated Finite-time Learning and Control in Cyber-Physical Systems
信息物理系统中的加速有限时间学习和控制
  • 批准号:
    DP230101107
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Discovery Projects
A population-based study of deep learning derived organ and tissue measures for accelerated aging using repurposed abdominal CT images
使用重新调整用途的腹部 CT 图像对深度学习衍生的器官和组织加速衰老措施进行基于人群的研究
  • 批准号:
    10795414
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Collaborative Research: Directed Enzyme Evolution Accelerated by Machine Learning for Enhancing the Biodegradation of Emerging Contaminants
合作研究:机器学习加速定向酶进化,增强新兴污染物的生物降解
  • 批准号:
    2203628
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了