AF: Small: Algorithm and Incentive Design for Modern Resource Allocation Platforms
AF:小:现代资源配置平台的算法和激励设计
基本信息
- 批准号:2113798
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The last decade has witnessed the rapid development of large-scale online platforms and marketplaces for effective allocation of resources, whether it be cloud-computing systems for allocating CPU, disk, and network bandwidth among competing jobs; online marketplaces for the sharing economy that match sellers of services such as rides, lodging, and skills with buyers of these services; or large-scale advertising platforms that match advertisers with publishers of content. This project will address the key challenges in algorithm and incentive design for these platforms, in particular those arising from three fundamental sources. The first is uncertainty in the characteristics of the set of participants interacting with the platform, whether it be job durations in a cloud-computing system, or buyer and seller valuations and the asymmetric knowledge of these in an online marketplace. The second is the dynamic nature of the set of participants, where jobs in a cloud system, as well as buyers and sellers in an online marketplace, dynamically arrive and depart. The third is multi-dimensionality of the resource-allocation problems, where jobs or buyers derive utility from several types of resources simultaneously. This project will develop holistic algorithmic approaches to address these challenges, while ensuring the resulting formulations remain computationally tractable. The resulting algorithmic techniques will provide guiding principles for obtaining practical improvements in the performance of these platforms. The project has an integrated education and outreach plan, whereby the next generation of students will be equipped with the relevant algorithmic skills via effective teaching and mentorship. Results from the project will also be broadly disseminated via publications in major conferences and journals; via organizing workshops that bring together researchers with diverse backgrounds; and finally, via developing course materials and tutorials.At a more technical level, the project is developing approaches that go beyond the worst-case via novel stochastic models of uncertainty and dynamics that will circumvent the computational hardness and existential impossibility results in worst-case models. The project is first developing new stochastic models for scheduling in data centers based on the multi-armed bandit framework, where jobs with multidimensional resource requirements dynamically arrive and have dependencies between them. The project is then developing an algorithmic theory for the strategic aspects of two-sided marketplaces arising from sharing economy applications. This involves developing Bayesian models for how the platform can use asymmetric information about the marketplace to influence the outcome of mechanisms run by sellers. It also involves developing techniques to address the dynamic aspect of matching and pricing buyers and sellers, when both sides arrive and depart over time according to stochastic processes. The project is borrowing modeling tools from and contributing tools to the topics of optimal control theory, Bayesian auctions and persuasion, dynamic pricing, and stochastic matchings. The key novelty of the project is in developing techniques at the intersection of well-studied and classic disciplines, such as at the intersection of stochastic optimization, learning theory, and scheduling theory; or optimal control, approximation algorithms, and computational economics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
过去十年见证了大规模在线平台和市场的快速发展,这些平台和市场用于有效分配资源,无论是用于在竞争性工作之间分配CPU、磁盘和网络带宽的云计算系统,还是用于共享经济的在线市场,这些市场将乘车、住宿和技能等服务的卖家与这些服务的买家相匹配;或者将广告商与内容发布者相匹配的大规模广告平台。该项目将解决这些平台在算法和激励设计方面的关键挑战,特别是来自三个基本来源的挑战。第一个是与平台交互的参与者的特征的不确定性,无论是云计算系统中的工作持续时间,还是在线市场中的买方和卖方估值以及这些信息的不对称知识。第二个是参与者集合的动态性质,云系统中的工作以及在线市场中的买家和卖家动态地到达和离开。第三是资源配置问题的多维性,即工作或购买者同时从几种类型的资源中获得效用。该项目将开发整体算法方法来解决这些挑战,同时确保所产生的公式在计算上仍然易于处理。由此产生的算法技术将提供指导原则,以获得这些平台的性能的实际改进。该项目有一个综合的教育和推广计划,下一代学生将通过有效的教学和辅导掌握相关的算法技能。该项目的成果还将通过在主要会议和期刊上发表的出版物;通过组织将不同背景的研究人员聚集在一起的讲习班;最后,通过开发课程材料和教程。在更技术的层面上,该项目正在开发超越最坏情况的方法-通过新的随机模型的不确定性和动态,将规避计算的硬度和存在的不可能性的结果在最坏情况下的模型。 该项目首先基于多臂强盗框架开发用于数据中心调度的新随机模型,其中具有多维资源需求的作业动态到达并在它们之间具有依赖性。然后,该项目正在开发一种算法理论,用于共享经济应用中产生的双边市场的战略方面。这涉及到开发贝叶斯模型,以确定平台如何利用有关市场的不对称信息来影响卖家运行的机制的结果。它还涉及开发技术,以解决匹配和定价买方和卖方的动态方面,当双方到达和离开随着时间的推移,根据随机过程。该项目是借用建模工具和贡献的工具,最优控制理论,贝叶斯拍卖和说服,动态定价和随机匹配的主题。该项目的关键新奇在于开发了研究充分和经典学科交叉的技术,例如随机优化,学习理论和调度理论的交叉;或最优控制,近似算法,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Price Discrimination for Randomized Mechanisms
随机机制的最优价格歧视
- DOI:10.1145/3490486.3538335
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ko, Shao-Heng;Munagala, Kamesh
- 通讯作者:Munagala, Kamesh
The Limits of an Information Intermediary in Auction Design
拍卖设计中信息中介的局限性
- DOI:10.1145/3490486.3538370
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Alijani, Reza;Banerjee, Siddhartha;Munagala, Kamesh;Wang, Kangning
- 通讯作者:Wang, Kangning
All Politics is Local: Redistricting via Local Fairness
所有政治都是地方性的:通过地方公平重新划分选区
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shao-Heng Ko;Erin Taylor;Pankaj Agarwal;Kamesh Munagala
- 通讯作者:Kamesh Munagala
Auditing for Core Stability in Participatory Budgeting
参与式预算核心稳定性的审计
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Munagala, K.;Shen, Y.;Wang, K.
- 通讯作者:Wang, K.
Robust Allocations with Diversity Constraints
具有多样性限制的稳健分配
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Shen, Z.;Gelauff, L.;Goel, A.;Korolova, A.;Munagala, K.
- 通讯作者:Munagala, K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kameshwar Munagala其他文献
Kameshwar Munagala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kameshwar Munagala', 18)}}的其他基金
AitF: Collaborative Research: Fair and Efficient Societal Decision Making via Collaborative Convex Optimization
AitF:协作研究:通过协作凸优化实现公平高效的社会决策
- 批准号:
1637397 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Dealing Efficiently with Big Social Network Data
BIGDATA:F:DKA:协作研究:有效处理社交网络大数据
- 批准号:
1447554 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative Research: Multi-dimensional Scheduling and Resource Allocation in Data Centers
AF:中:协同研究:数据中心多维调度与资源分配
- 批准号:
1408784 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CCF:AF:EAGER Algorithmic Paradigms for Computation on MapReduce
CCF:AF:EAGER MapReduce 计算算法范式
- 批准号:
1348696 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF: Small: Auction Design in Constrained Settings
AF:小型:受限环境下的拍卖设计
- 批准号:
1008065 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Light-weight Near-optimal Stochastic Control Policies for Information Acquisition and Exploitation
职业:用于信息获取和利用的轻量级近最优随机控制策略
- 批准号:
0745761 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2334624 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Practical Memory Access Pattern Obfuscation with Algorithm, Application and Architecture Co-designs
CNS 核心:小型:通过算法、应用程序和架构协同设计进行实用内存访问模式混淆
- 批准号:
2152497 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2126643 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
- 批准号:
2130125 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
- 批准号:
2203239 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2126642 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RI: Small: The TAO algorithm: principled, efficient optimization of decision trees, forests, tree-based neural nets, and beyond
RI:小:TAO 算法:决策树、森林、基于树的神经网络等的原则性、高效优化
- 批准号:
2007147 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Fast Algorithm Originated Fault Detection Scheme for Ring-LWE based Cryptographic Hardware
SaTC:CORE:小型:快速算法发起的基于 Ring-LWE 的加密硬件故障检测方案
- 批准号:
2020625 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Autonomous Guidance, Navigation, and Control Using Vector Code Correlation Algorithm for Landing on Far-Distant Small Bodies
利用矢量码相关算法实现远距离小天体着陆的自主制导、导航和控制
- 批准号:
20J23574 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CIF: Small: Deep Learning for Information Theory- Tackling Algorithm Deficit
CIF:小型:信息论深度学习 - 解决算法缺陷
- 批准号:
1908003 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant