MCA: A Computational Framework to Study microRNAs in Cell-Cell Interactions

MCA:研究细胞间相互作用中 microRNA 的计算框架

基本信息

项目摘要

Cell to cell Interactions are essential for the overall function of multicellular organisms. Recent studies have discovered that non-coding microRNAs (miRNAs) can be transferred from one cell to another cell to perform certain physiological functions. Understanding which miRNAs participate in this intercellular crosstalk and how they function under specific environmental conditions is essential to gaining a new perspective of intercellular communications. Biotechnology advancement has generated a large amount of transcriptomics data that motivate efficient computational strategies to understand miRNAs in cell-cell interactions, which is fundamental to modeling biological systems. This project investigation miRNAs in cell-cell interactions will generate methods and tools that will be freely available to the scientific community. The research will be incorporated into graduate, undergraduate and K-12 education, and will be disseminated to the research community and the public to enhance scientific understanding. The project seeks to integrate large-scale transcriptomics data and create efficient computational algorithms to model miRNA activities relevant to cell-cell interactions under different conditions. The advanced statistical algorithms and probabilistic models of miRNA activities related to cell-cell interactions promise to unveil various roles of miRNAs in cell communications and phenotype formulation. The research is expected to not only advance scientific understanding of cell communications but also stimulate interest in developing and advancing efficient computational modeling and data integration methods in the informatics research field. Outputs of the project will be made available through the project website (http://hulab.ucf.edu/research/projects/cell2cell/).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细胞与细胞之间的相互作用对于多细胞生物的整体功能是必不可少的。最近的研究发现,非编码microRNAs(miRNAs)可以从一个细胞转移到另一个细胞,以执行某些生理功能。了解哪些miRNAs参与这种细胞间串扰以及它们在特定环境条件下如何发挥作用对于获得细胞间通信的新视角至关重要。生物技术的进步产生了大量的转录组学数据,这些数据激发了有效的计算策略来理解细胞-细胞相互作用中的miRNA,这是建模生物系统的基础。 该项目研究细胞间相互作用中的miRNAs将产生可供科学界免费使用的方法和工具。该研究将纳入研究生,本科和K-12教育,并将传播给研究界和公众,以提高科学的理解。该项目旨在整合大规模转录组学数据,并创建有效的计算算法来模拟不同条件下与细胞-细胞相互作用相关的miRNA活性。与细胞-细胞相互作用相关的miRNA活性的先进统计算法和概率模型有望揭示miRNA在细胞通信和表型形成中的各种作用。该研究不仅有望促进对细胞通信的科学理解,还将激发人们对开发和推进信息学研究领域的高效计算建模和数据集成方法的兴趣。 该项目的成果将通过项目网站(http://hulab.ucf.edu/research/projects/cell2cell/)提供。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
INSISTC: Incorporating network structure information for single-cell type classification
INSISTC:结合网络结构信息进行单细胞类型分类
  • DOI:
    10.1016/j.ygeno.2022.110480
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Zheng, Hansi;Wang, Saidi;Li, Xiaoman;Hu, Haiyan
  • 通讯作者:
    Hu, Haiyan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haiyan Hu其他文献

rRNAFilter: A Fast Approach for Ribosomal RNA Read Removal Without a Reference Database
rRNAFilter:无需参考数据库即可快速去除核糖体 RNA 片段的方法
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Wang;Haiyan Hu;X. Li
  • 通讯作者:
    X. Li
Hierarchical order of gene expression levels
基因表达水平的层次顺序
Simulation complexities in the dynamics of a continuously piecewise-linear oscillator
  • DOI:
    10.1016/0960-0779(95)00005-o
  • 发表时间:
    1995-11
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Haiyan Hu
  • 通讯作者:
    Haiyan Hu
Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China: Implications for depositional controls on organic matter ccumulation
中国西南地区下志留统龙马溪泥岩的地球化学和沉积学:沉积控制对有机质堆积的意义
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Yiquan Ma;Majie Fan;Yongchao Lu;Xusheng Guo;Haiyan Hu;Lei Chen;Chao Wang;Xiaochen Liu
  • 通讯作者:
    Xiaochen Liu
On-orbit assembly of a team of flexible spacecraft using potential field based method
使用基于势场的方法在轨组装一组柔性航天器
  • DOI:
    10.1016/j.actaastro.2017.01.021
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Ti Chen;Hao Wen;Haiyan Hu;Dongping Jin
  • 通讯作者:
    Dongping Jin

Haiyan Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haiyan Hu', 18)}}的其他基金

ABI Innovation: Computational Methods to Study Gene Transcription Initiation Patterns
ABI Innovation:研究基因转录起始模式的计算方法
  • 批准号:
    1661414
  • 财政年份:
    2017
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
ABI Innovation: Computational Analysis of microRNA Binding
ABI Innovation:microRNA 结合的计算分析
  • 批准号:
    1356524
  • 财政年份:
    2014
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
CAREER: A Computational Framework to Study Epigenetic Regulation
职业:研究表观遗传调控的计算框架
  • 批准号:
    1149955
  • 财政年份:
    2012
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Continuing Grant
BRIGE: Computational Identification of Gene Regulatory Networks in Microalgae
BRIGE:微藻基因调控网络的计算识别
  • 批准号:
    1125676
  • 财政年份:
    2011
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
  • 批准号:
    2348495
  • 财政年份:
    2024
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
A Neural and Computational Framework of the Effort Paradox
努力悖论的神经和计算框架
  • 批准号:
    EP/Y014561/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Research Grant
CAREER: A multi-scale and hierarchical computational framework to model III-nitride devices operating in the near-terahertz regime
职业:多尺度和分层计算框架,用于模拟在近太赫兹区域运行的 III 族氮化物器件
  • 批准号:
    2237663
  • 财政年份:
    2023
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Continuing Grant
Developing an Experimental and Computational Framework for Studying Neural Representations of Tactile Motion on the Hand
开发用于研究手部触觉运动神经表征的实验和计算框架
  • 批准号:
    10732095
  • 财政年份:
    2023
  • 资助金额:
    $ 39.88万
  • 项目类别:
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
  • 批准号:
    2349122
  • 财政年份:
    2023
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
Alternative protein sources: growing the next generation computational modelling framework
替代蛋白质来源:发展下一代计算模型框架
  • 批准号:
    2886049
  • 财政年份:
    2023
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Studentship
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
  • 批准号:
    2310910
  • 财政年份:
    2023
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
A New Computational Framework for Superior Image Reconstruction in Limited Data Quantitative Photoacoustic Tomography
有限数据定量光声断层扫描中卓越图像重建的新计算框架
  • 批准号:
    2309491
  • 财政年份:
    2023
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
CAREER: A Multiscale Computational and Experimental Framework to Elucidate the Biomechanics of Infant Growth
职业生涯:阐明婴儿生长生物力学的多尺度计算和实验框架
  • 批准号:
    2238859
  • 财政年份:
    2023
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
CAREER: Probabilistic Framework for Self-Supervised, Data-Driven Computational Imaging
职业:自我监督、数据驱动的计算成像的概率框架
  • 批准号:
    2236796
  • 财政年份:
    2023
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了