NSF-AoF: FET: Small: Ubiquitous in-sensor computing for adaptive intelligent systems

NSF-AoF:FET:小型:适用于自适应智能系统的无处不在的传感器内计算

基本信息

  • 批准号:
    2133475
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Miniaturized sensor systems with built-in memory and computing functionalities are the cornerstones of artificial intelligence at the edge. However, in currently deployed systems, sensing and computing occur in separate physical locations, imposing massive data shuttling between the sensor module and the cloud-computing platform. This is unsustainable in terms of energy efficiency, latency, and capacity to process sensor data, and hence has a negative environmental impact with billions of sensors connected in the era of the Internet of Things (IoT). The proposed project intends to go beyond state-of-the-art by system-level integration of sensing, memory, and computing functionalities into one chip, allowing for ubiquitous applications at low energy budget and low latency. Furthermore, building such systems on flexible substrates will enable affordable and biodegradable smart-wearables electronics capable of monitoring human health continuously and adaptively. The proposed educational and outreach activities will promote STEM careers, encourage diversity in engineering education and research, and significantly impact securing the future prosperity of the U.S. and the European collaborative partner (Finland). The proposed research aims at delivering intelligent and energy-efficient wearable electronics that will become ubiquitous in the era of IoT. The specific objectives towards this goal are as follows: 1) to design and fabricate emerging materials and devices for flexible sensors; 2) to integrate ferroelectric sensors and memristor crossbar arrays into a flexible near-sensor computing system with embedded security functionality; and 3) to demonstrate an in-sensor computing platform where emerging devices will be used as both sensing and non-volatile memory elements for in-pixel intelligent processing of images. The proposed research will enable the next-generation smart and flexible wearable electronics to process the acquired information onsite. By integrating the sensor module with the computing engine, the emerging hardware technologies will substantially improve power efficiency and computing throughput.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有内置存储器和计算功能的微型传感器系统是边缘人工智能的基石。然而,在当前部署的系统中,传感和计算发生在不同的物理位置,从而在传感器模块和云计算平台之间施加大量数据穿梭。这在能源效率、延迟和处理传感器数据的能力方面是不可持续的,因此在物联网(IoT)时代连接了数十亿个传感器,对环境产生了负面影响。拟议的项目旨在通过将传感,存储器和计算功能集成到一个芯片中的系统级集成来超越最先进的技术,从而以低能耗预算和低延迟实现无处不在的应用。此外,在柔性基板上构建这样的系统将使负担得起的和可生物降解的智能可穿戴电子设备能够连续和自适应地监测人类健康。拟议的教育和外展活动将促进STEM事业,鼓励工程教育和研究的多样性,并对确保美国和欧洲合作伙伴(芬兰)的未来繁荣产生重大影响。拟议的研究旨在提供智能和节能的可穿戴电子产品,这些电子产品将在物联网时代变得无处不在。 实现这一目标的具体目标如下:1)设计和制造用于柔性传感器的新兴材料和器件; 2)将铁电传感器和忆阻器交叉阵列集成到具有嵌入式安全功能的柔性近传感器计算系统中;以及3)演示传感器内计算平台,其中新兴器件将用作传感器内的感测和非易失性存储器元件。图像的像素智能处理。拟议的研究将使下一代智能和灵活的可穿戴电子设备能够现场处理所获取的信息。通过将传感器模块与计算引擎集成,新兴的硬件技术将大大提高电源效率和计算吞吐量。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Energy-Efficient Computing Hardware Based on Memristive Nanodevices
  • DOI:
    10.1109/mnano.2023.3297106
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Y. Huang;Vignesh Ravichandran;Wuyu Zhao;Qiangfei Xia
  • 通讯作者:
    Y. Huang;Vignesh Ravichandran;Wuyu Zhao;Qiangfei Xia
Flexible Piezoelectric Pressure Sensors with In-Memory Computing Capabilities for Intelligent Electronic Skin.
具有内存计算功能的柔性压电压力传感器,适用于智能电子皮肤。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Majumdar, Sayani;Mäkelä, Tapio;Pernu, Tapio;Zhao, Wuyu;Xia, Qiangfei
  • 通讯作者:
    Xia, Qiangfei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qiangfei Xia其他文献

Alkylsiloxane self-assembled monolayer formation guided by nanoimprinted Si and SiO2 templates
纳米压印 Si 和 SiO2 模板引导烷基硅氧烷自组装单层形成
  • DOI:
    10.1063/1.2360920
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    4
  • 作者:
    A. A. Yasseri;Shashank Sharma;T. Kamins;Qiangfei Xia;S. Chou;R. Pease
  • 通讯作者:
    R. Pease
Parallelizing analog in-sensor visual processing with arrays of gate-tunable silicon photodetectors
用栅极可调谐硅光电探测器阵列并行化模拟传感器内视觉处理
  • DOI:
    10.1038/s41467-025-60006-x
  • 发表时间:
    2025-05-21
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Zheshun Xiong;Wen Liang;Meiyue Zhang;Dacheng Mao;Qiangfei Xia;Guangyu Xu
  • 通讯作者:
    Guangyu Xu
Learning with Resistive Switching Neural Networks
使用电阻开关神经网络学习
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mingyi Rao;Qiangfei Xia;J. Yang;Zhongrui Wang;Can Li;Hao Jiang;Rivu Midya;Peng Lin;Daniel Belkin;Wenhao Song;Shiva Asapu
  • 通讯作者:
    Shiva Asapu
Artificial neural networks based on memristive devices
基于忆阻器的人工神经网络
  • DOI:
    10.1007/s11432-018-9425-1
  • 发表时间:
    2018-05-15
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Vignesh Ravichandran;Can Li;Ali Banagozar;J. Joshua Yang;Qiangfei Xia
  • 通讯作者:
    Qiangfei Xia
Geometrical dependence of optical negative index meta-materials at 1.55 μm
  • DOI:
    10.1007/s00339-009-5139-9
  • 发表时间:
    2009-03-03
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Wei Wu;Ekaterina Ponizovskaya;Evgenia Kim;David Cho;Alexander Bratkovsky;Zhaoning Yu;Qiangfei Xia;Xuema Li;Y. Ron Shen;S. Y. Wang;R. Stanley Williams
  • 通讯作者:
    R. Stanley Williams

Qiangfei Xia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qiangfei Xia', 18)}}的其他基金

Collaborative Research: ASCENT: 3D memristor convolutional kernels with diffusive memristor based reservoir for real-time machine learning
合作研究:ASCENT:3D 忆阻器卷积核,具有基于扩散忆阻器的存储库,用于实时机器学习
  • 批准号:
    2023752
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
E2CDA: Type I: Collaborative Research: Energy-efficient analog computing with emerging memory devices
E2CDA:类型 I:协作研究:使用新兴存储设备的节能模拟计算
  • 批准号:
    1740248
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Scaling of Memristive Nanodevices and Arrays
职业:忆阻纳米器件和阵列的扩展
  • 批准号:
    1253073
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

NSF-AoF: NeTS: Small: Local 6G Connectivity: Controlled, Resilient, and Secure (6G-ConCoRSe)
NSF-AoF:NetS:小型:本地 6G 连接:受控、弹性和安全 (6G-ConCoRSe)
  • 批准号:
    2326599
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225577
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-AoF: CIF: Small: Distributed AI for enhanced security in satellite-aided wireless navigation (RESILIENT)
NSF-AoF:CIF:小型:分布式 AI,用于增强卫星辅助无线导航的安全性(弹性)
  • 批准号:
    2326559
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-AoF: SOLID: System-wide Operation via Learning In-device Dissimilarities
NSF-AoF:SOLID:通过学习设备内差异进行系统范围的操作
  • 批准号:
    2225555
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: AF: Small: Energy-Efficient THz Communications Across Massive Dimensions
合作研究:NSF-AoF:CIF:AF:小型:大尺寸的节能太赫兹通信
  • 批准号:
    2225576
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-AoF: Collaborative Research: CIF: Small: 6G Wireless Communications via Enhanced Channel Modeling and Estimation, Channel Morphing and Machine Learning for mmWave Bands
NSF-AoF:协作研究:CIF:小型:通过增强型毫米波信道建模和估计、信道变形和机器学习实现 6G 无线通信
  • 批准号:
    2225617
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-AoF: Impact of user, environment, and artificial surfaces on above-100 GHz wireless communications
NSF-AoF:用户、环境和人造表面对 100 GHz 以上无线通信的影响
  • 批准号:
    2133655
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了