EAR-Climate: Catalytic: A Modern Spatio-Temporal Hierarchical Modeling Framework for Paleo-Environmental Data (PaleoSTeHM)
EAR-Climate:催化:古环境数据的现代时空分层建模框架 (PaleoSTeHM)
基本信息
- 批准号:2148265
- 负责人:
- 金额:$ 80.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The geological record provides the only long-term archive of environmental change and variability. Yet that record is sparse and often quite noisy and indirect. Reconstructing past environmental conditions is thus a critical and challenging statistical task. For example, sea level varies over a broad range of spatial and temporal scales. Global average sea-level change must be estimated from sparse, noisy, indirect and typically local records, such as the ecological preferences of fossils preserved in salt marsh sediments. Similar challenges arise in the interpretation of other types of environmental records (for example, of temperature or precipitation). Existing statistical analysis packages are not equipped to easily reconstruct past environmental fields while addressing some of the distinctive characteristics of paleo-environmental records. These challenges include the complex relationships between what can be observed in geological materials and the environmental conditions that they reflect, and the uncertainties that characterize the age of geological samples. Past efforts have thus generally relied on custom-built, problem-specific code, which has limited the adoption of state-of-the-art analysis approaches. The PaleoSTeHM project will therefore develop a new software framework, built on top of modern, scalable software infrastructure for machine learning, that will enable broader use of these approaches. It will thus facilitate the contextualization of current global change and lead to improved projections of future global change risk. The project will also develop resources to train early-career Earth scientists seeking to employ theme methods in their research.The central concept in PaleoSTeHM is that of the spatio-temporal hierarchical statistical model. These models provide a natural, conceptually straightforward (but sometimes computationally challenging) framework for reconstructing past environmental variables over space and time. Hierarchical statistical models, which are frequently implemented in a Bayesian framework, partition the multiple random effects that lead to individual observations into levels, thus clarifying the assumptions in a statistical analysis. They separate the underlying phenomenon of interest and its variability from the noisy mechanisms by which this underlying process is observed. PaleoSTeHM will develop a Python-based framework for spatio-temporal hierarchical modeling of paleodata. By leveraging an existing, widely used machine-learning framework at the base level, PaleoSTeHM will be built to take advantage of current and future computational advances without modifications to the user-facing product. It will facilitate the incorporation of complex likelihood structures, including the embedding of physical simulation models, and thus pave the way for further advances in paleo-modeling.This project is co-funded by a collaboration between the Directorate for Geosciences and Office of Advanced Cyberinfrastructure to support AI/ML and open science activities in the geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地质记录提供了环境变化和可变性的唯一长期档案。然而,这种记录是稀疏的,往往相当嘈杂和间接。因此,重建过去的环境条件是一项关键和具有挑战性的统计任务。例如,海平面在很大的空间和时间尺度上变化。全球平均海平面变化必须根据稀疏、嘈杂、间接且典型的当地记录来估计,例如盐沼沉积物中保存的化石的生态偏好。在解释其他类型的环境记录(例如温度或降水)时也会出现类似的挑战。现有的统计分析软件包不具备很容易重建过去的环境领域,同时解决一些独特的特点,古环境记录。这些挑战包括在地质材料中可以观察到的东西与它们所反映的环境条件之间的复杂关系,以及地质样品年龄的不确定性。因此,过去的努力通常依赖于定制的、针对特定问题的代码,这限制了最先进的分析方法的采用。因此,PaleoSTeHM项目将开发一个新的软件框架,建立在现代化的、可扩展的机器学习软件基础设施之上,这将使这些方法得到更广泛的使用。 因此,它将有助于将当前全球变化的背景化,并导致对未来全球变化风险的更好预测。该项目还将开发资源,以培训在其研究中寻求采用主题方法的早期职业地球科学家。这些模型提供了一个自然的,概念上简单(但有时计算上具有挑战性)的框架重建过去的环境变量在空间和时间。通常在贝叶斯框架中实现的分层统计模型将导致个体观察结果的多个随机效应划分为多个水平,从而澄清统计分析中的假设。它们将感兴趣的潜在现象及其可变性与观察该潜在过程的噪声机制分开。PaleoSTeHM将开发一个基于Python的框架,用于古数据的时空分层建模。通过在基础层面利用现有的、广泛使用的机器学习框架,PaleoSTeHM将在不修改面向用户的产品的情况下利用当前和未来的计算进步。它将有助于纳入复杂的似然结构,包括嵌入物理模拟模型,该项目由地球科学理事会和高级网络基础设施办公室共同资助,以支持人工智能/该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识产权进行评估来支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Kopp其他文献
MP01-17 AGE, SEX, AND CLIMATE DIFFERENCES IN THE TEMPERATURE-DEPENDENCE OF KIDNEY STONE PRESENTATION
- DOI:
10.1016/j.juro.2017.02.092 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Gregory Tasian;Ana Vicedo-Cabrera;Robert Kopp;Lihai Song;Michelle Ross;Jose Pulido;Steven Warner;David Goldfarb;Susan Furth - 通讯作者:
Susan Furth
COMMON ERA SEA-LEVEL BUDGETS ALONG THE U.S. ATLANTIC COAST INFORMED BY ROBUST FORAMINIFERAL-BASED RECONSTRUCTIONS
基于稳健的有孔虫重建的美国大西洋沿岸的共同时代海平面预算
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jennifer Walker;N. Cahill;Robert Kopp;N. Khan;T. Shaw;Donald Barber;Ken Miller;Adam Switzer;Benjamin P. Horton - 通讯作者:
Benjamin P. Horton
Robert Kopp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Kopp', 18)}}的其他基金
Large-scale CoPe: Megalopolitan Coastal Transformation Hub (MACH): Researching complex interactions between climate hazards and communities to inform governance of coastal risk.
大规模 CoPe:大都市沿海转型中心 (MACH):研究气候灾害与社区之间复杂的相互作用,为沿海风险治理提供信息。
- 批准号:
2103754 - 财政年份:2021
- 资助金额:
$ 80.08万 - 项目类别:
Cooperative Agreement
Collaborative Research: How Robust Are Common-Era Sea-Level Reconstructions?
合作研究:共纪海平面重建有多稳健?
- 批准号:
2002437 - 财政年份:2020
- 资助金额:
$ 80.08万 - 项目类别:
Standard Grant
Collaborative Research: P2C2 -- Connecting Common Era climate and sea level variability along the Eastern North American coastline
合作研究:P2C2——连接北美东部海岸线的共同时代气候和海平面变化
- 批准号:
1804999 - 财政年份:2018
- 资助金额:
$ 80.08万 - 项目类别:
Standard Grant
Collaborative Research: Multi-proxy sea-level reconstructions and projections in the middle Pacific Ocean
合作研究:中太平洋多代理海平面重建和预测
- 批准号:
1831450 - 财政年份:2018
- 资助金额:
$ 80.08万 - 项目类别:
Standard Grant
Collaborative Research: PREEVENTS Track 2: Thresholds and envelopes of rapid ice-sheet retreat and sea-level rise: reducing uncertainty in coastal flood hazards
合作研究:预防事件轨道 2:冰盖快速消退和海平面上升的阈值和范围:减少沿海洪水灾害的不确定性
- 批准号:
1663807 - 财政年份:2017
- 资助金额:
$ 80.08万 - 项目类别:
Continuing Grant
Collaborative Research: P2C2 - Reconstructing rates and sources of sea-level change over the last ~150 thousand years from a new coral database
合作研究:P2C2 - 从新的珊瑚数据库重建过去约 15 万年海平面变化的速率和来源
- 批准号:
1702587 - 财政年份:2017
- 资助金额:
$ 80.08万 - 项目类别:
Standard Grant
NRT: Coastal Climate Risk and Resilience (C2R2)
NRT:沿海气候风险和恢复力(C2R2)
- 批准号:
1633557 - 财政年份:2016
- 资助金额:
$ 80.08万 - 项目类别:
Standard Grant
Collaborative Research: P2C2 -- Statistical estimation of past ice sheet volumes from paleo-sea level records
合作研究:P2C2——根据古海平面记录对过去冰盖体积的统计估计
- 批准号:
1203415 - 财政年份:2012
- 资助金额:
$ 80.08万 - 项目类别:
Standard Grant
相似海外基金
What is the impact of increasing boreal forest fires on Arctic climate and sea ice?
北方森林火灾的增加对北极气候和海冰有何影响?
- 批准号:
2337045 - 财政年份:2024
- 资助金额:
$ 80.08万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
$ 80.08万 - 项目类别:
Standard Grant
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
$ 80.08万 - 项目类别:
Standard Grant
Rossbypalooza 2024: A Student-led Summer School on Climate and Extreme Events Conference; Chicago, Illinois; July 22-August 2, 2024
Rossbypalooza 2024:学生主导的气候和极端事件暑期学校会议;
- 批准号:
2406927 - 财政年份:2024
- 资助金额:
$ 80.08万 - 项目类别:
Standard Grant
Conference: Workshop on Mobilizing Our Universities for Education on Energy Use, Carbon Emissions, and Climate Change
会议:动员大学开展能源使用、碳排放和气候变化教育研讨会
- 批准号:
2402605 - 财政年份:2024
- 资助金额:
$ 80.08万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: Assessing the net climate impact of tropical peatland restoration: the role of methane
博士后奖学金:EAR-PF:评估热带泥炭地恢复对气候的净影响:甲烷的作用
- 批准号:
2305578 - 财政年份:2024
- 资助金额:
$ 80.08万 - 项目类别:
Fellowship Award
NSF PRFB FY 2023: Considering evolutionary responses to temperature variability when predicting risk to climate change and disease in amphibians
NSF PRFB 2023 财年:在预测气候变化和两栖动物疾病风险时考虑对温度变化的进化反应
- 批准号:
2305659 - 财政年份:2024
- 资助金额:
$ 80.08万 - 项目类别:
Fellowship Award
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 80.08万 - 项目类别:
Continuing Grant
NSF Engines Development Award: Creating climate-resilient opportunities for plant systems (NC)
NSF 发动机开发奖:为工厂系统创造气候适应机会 (NC)
- 批准号:
2315399 - 财政年份:2024
- 资助金额:
$ 80.08万 - 项目类别:
Cooperative Agreement
The global impact of high summer temperature on heatstroke mortality in the current climate scenario
当前气候情景下夏季高温对中暑死亡率的全球影响
- 批准号:
24K13527 - 财政年份:2024
- 资助金额:
$ 80.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)