CRII: SCH: Multi-modal Soft Tissue Characterization for Non-invasive Breast Imaging
CRII:SCH:非侵入性乳腺成像的多模式软组织表征
基本信息
- 批准号:2153430
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Breast cancer is the most common type of cancer among women worldwide, and its early detection is one of the most important enabling factors for better post-treatment prognosis which significantly affects the quality of life for survivors. This project will develop a fundamental understanding of soft tissue behaviors using an optimization framework with ultrasound and electrical impedance tomography to provide an accessible and reliable tool for potential usages in breast cancer screening. The specification of a distinct feature of collagen in the human breast will provide a clue for a new breast cancer biomarker. The successful completion of the project will lead to improved technologies associated with an advanced breast cancer screening technique employing multi-modal characterization such as wearable sensors, artificial intelligence in medical imaging, and point-of-care diagnostic systems.The research team will implement an optimization framework that can learn from the physical responses of soft tissue in order to visualize the cross-sectional human breast non-invasively using an integrated imaging technique combining ultrasound and electrical impedance tomography. The first specific aim is to establish the optimization algorithms and multi-modal parameters that present a line of demarcation for actively responding soft tissues against the electro-mechanical stimuli with minimal artifacts. The resultant images will illustrate how the soft tissues respond against ultrasound stimulation under different patterns of electric fields with temperature distribution information across the soft tissues. The second specific aim is to conduct a repeated measure study involving healthy subjects so as to identify critical factors that affect the multi-modal characterization results over time. This observational study will lead to not only an improved understanding of the algorithm parameters required to account for temporal variability for patient-specific adaptation of the algorithm while bridging the gap between ex vivo and in vivo electromechanical characteristics of human breast tissues.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。乳腺癌是全球女性中最常见的癌症类型,其早期发现是改善治疗后预后的最重要因素之一,显著影响幸存者的生活质量。该项目将使用超声和电阻抗断层扫描的优化框架对软组织行为进行基本了解,为乳腺癌筛查的潜在用途提供一种可访问和可靠的工具。人类乳腺中胶原蛋白的独特特征的说明将为新的乳腺癌生物标志物提供线索。该项目的成功完成将导致与先进的乳腺癌筛查技术相关的技术得到改进,该技术采用多模态表征,如可穿戴传感器,医学成像中的人工智能,研究小组将实施一个优化框架,该框架可以从软组织的物理反应中学习,以便可视化人体乳房的横截面,使用结合超声和电阻抗断层扫描的集成成像技术侵入性地进行。第一个具体目标是建立优化算法和多模态参数,这些优化算法和多模态参数呈现出一条分界线,用于以最小的伪影对机电刺激主动响应软组织。所得图像将说明软组织如何在不同电场模式下对超声刺激作出反应,并提供软组织上的温度分布信息。第二个具体目标是进行一项涉及健康受试者的重复测量研究,以确定随时间推移影响多模态表征结果的关键因素。这项观察性研究不仅将提高对解释患者时间变异性所需的算法参数的理解,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kihan Park其他文献
Machine learning approach for breast cancer localization
用于乳腺癌定位的机器学习方法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kihan Park;J. Desai - 通讯作者:
J. Desai
Design and analysis of an under-actuated XYθ stage for automated tissue indentation
用于自动组织压痕的欠驱动 XYθ 平台的设计和分析
- DOI:
10.1109/iros.2015.7353991 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
C. Davis;Kihan Park;J. Desai - 通讯作者:
J. Desai
Development of mirror image motion system with sEMG for shoulder rehabilitation of post-stroke hemiplegic patients
开发用于脑卒中偏瘫患者肩部康复的表面肌电镜镜像运动系统
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Kihan Park;Dong Ju Lee;P. Heo;Jung Kim - 通讯作者:
Jung Kim
Bimanual shoulder flexion system with surface electromyography for hemiplegic patients after stroke: A preliminary study
带有表面肌电图的双手肩屈曲系统用于脑卒中偏瘫患者的初步研究
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Kihan Park;Suncheol Kwon;Jung Kim;B. Rim - 通讯作者:
B. Rim
Viscoelastic Properties of Human Autopsy Brain Tissues as Biomarkers for Alzheimer's Diseases.
- DOI:
10.1109/tbme.2018.2878555 - 发表时间:
2019-06 - 期刊:
- 影响因子:0
- 作者:
Kihan Park;Lonsberry GE;Gearing M;Levey AI;Desai JP - 通讯作者:
Desai JP
Kihan Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于生物类芬顿的LA/Sch@BB耦合系统去除水产养殖尾水中抗生素的效果与机制研究
- 批准号:42377063
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
具有低聚合收缩和生态防龋双功能的埃洛石纳米管@SCH-79797改性复合树脂的研究
- 批准号:82170950
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
一类稳态Schödinger-Poisson-Slater方程标准化解的研究
- 批准号:11501137
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
锥中修改的Poisson-Sch积分在无穷远点处的渐近行为及其应用
- 批准号:U1304102
- 批准年份:2013
- 资助金额:30.0 万元
- 项目类别:联合基金项目
酵母中Sch9蛋白激酶信号途径调控衰老的分子机理
- 批准号:30671181
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
SCH: MS-ADAPT: Multi-Sensor Adaptive Data Analytics for Physical Therapy
SCH:MS-ADAPT:用于物理治疗的多传感器自适应数据分析
- 批准号:
2205093 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Using Multi-Stage Learning to Prioritize Mental Health Risk Using Evidence from Speech and Text
合作研究:SCH:利用语音和文本证据,利用多阶段学习来优先考虑心理健康风险
- 批准号:
2124224 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: Wearable Multi-Modal Sensing and Stimulation Arrays for Muscle-Aware Exoskeleton Control
SCH:用于肌肉感知外骨骼控制的可穿戴多模态传感和刺激阵列
- 批准号:
2124017 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
- 批准号:
2124270 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: INT: Personalized Real-Time Learning of Optimal Diagnostic Tests using Multi-Modal Clinical Data
SCH:INT:使用多模式临床数据进行最佳诊断测试的个性化实时学习
- 批准号:
1722516 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: High-throughput Phenotyping on Electronic Health Records using Multi-Tensor Factorization
SCH:INT:协作研究:使用多张量分解对电子健康记录进行高通量表型分析
- 批准号:
1417819 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: High-throughput Phenotyping on Electronic Health Records using Multi-Tensor Factorization
SCH:INT:协作研究:使用多张量分解对电子健康记录进行高通量表型分析
- 批准号:
1417697 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: High-throughput Phenotyping on Electronic Health Records using Multi-Tensor Factorization
SCH:INT:协作研究:使用多张量分解对电子健康记录进行高通量表型分析
- 批准号:
1418511 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: High-throughput Phenotyping on Electronic Health Records using Multi-Tensor Factorization
SCH:INT:协作研究:使用多张量分解对电子健康记录进行高通量表型分析
- 批准号:
1418504 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant