Noncommutative Analysis in the Theory of Nonlocal Games

非局部博弈论中的非交换分析

基本信息

  • 批准号:
    2154459
  • 负责人:
  • 金额:
    $ 26.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

One of the most intriguing and, at the same time, practically useful features of quantum mechanics is quantum entanglement. It is now known that entanglement allows the accomplishment of operational tasks that are impossible to perform by using classical resources alone. Nonlocal games, originally studied from the perspective of theoretical computer science, have proved to be a useful tool for the study of its power and limitations. This project is aimed at pursuing further the organic links between these combinatorial and probabilistic objects and mathematical analysis on noncommutative structures. The project will contribute to the current large-scale quantization program in mathematics and focuses on the passage from classical to quantum nonlocal games. The work of the project will serve directly the enhancement of interdisciplinarity in pure mathematics, while contributing to the quantum initiatives currently pursued at a number of levels nationally. The project provides research training opportunities for undergraduate and graduate students.The backbone of the project is formed by finitely presented operator systems and C*-algebras, and their tensor products. It develops core operator algebraic techniques and applies them in areas of quantum information theory, studying new operator algebraic concepts arising from quantum and classical graphs, hypergraphs and partial orders. The main objectives are to (i) identify quantum versions of the graph isomorphism games and some of their useful generalizations, and characterize their perfect strategies using operator theory; (ii) develop operator algebraic methods of strategy transfer between games and study a new notion of game equivalence; and (iii) provide closed formulas via operator tensor norms for the optimal probability of winning a given quantum game when the players have access to a strong degree of entanglement. The techniques that will be used to achieve these goals include operator theory, completely bounded and completely positive maps, tensor theory for operator algebras as well as von Neumann algebra theory. The project reveals analytical features of discrete structures with a broad spectrum of applications, such as hypergraphs, introduces a new operator space tensor product, and studies novel operator systems arising from isometric and unitary operators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子力学最有趣的同时也是最实用的特性之一就是量子纠缠。现在我们知道,纠缠允许完成仅使用经典资源无法完成的操作任务。最初从理论计算机科学的角度研究的非局部博弈,已被证明是研究其力量和局限性的有用工具。这个项目的目的是进一步追求这些组合和概率对象和非交换结构的数学分析之间的有机联系。该项目将有助于当前的大规模量化计划在数学和重点从经典到量子非局部游戏的通道。该项目的工作将直接促进纯数学的跨学科性,同时促进目前在国家各级开展的量子倡议。该项目为本科生和研究生提供了研究训练的机会。该项目的骨干是由提出的算子系统和C*-代数及其张量积组成的。它开发了核心算子代数技术,并将其应用于量子信息理论领域,研究量子和经典图,超图和偏序产生的新算子代数概念。主要目标是(i)确定图同构博弈的量子形式及其一些有用的推广,并利用算子理论刻画其完美策略:(ii)发展博弈之间策略转移的算子代数方法,并研究博弈等价的新概念;以及(iii)通过算子张量范数提供封闭公式,当玩家可以获得很强的纠缠将用于实现这些目标的技术包括算子理论,完全有界和完全正映射,算子代数的张量理论以及冯诺依曼代数理论。该项目揭示了具有广泛应用的离散结构的分析特征,如超图,引入了新的算子空间张量积,并研究了由等距算子和酉算子产生的新型算子系统。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synchronicity for quantum non-local games
  • DOI:
    10.1016/j.jfa.2022.109738
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Michael Brannan;Samuel J. Harris;I. Todorov;L. Turowska
  • 通讯作者:
    Michael Brannan;Samuel J. Harris;I. Todorov;L. Turowska
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ivan Todorov其他文献

Storage Proteins Characterization of A Group of New Bulgarian High Breadmaking Quality Wheat Lines
  • DOI:
    10.1007/bf03543524
  • 发表时间:
    1998-12-31
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Peter Ivanov;Ivan Todorov;Ivanka Stoeva;Irina Ivanova
  • 通讯作者:
    Irina Ivanova
Do the NMS-10 Develop Sustainably in the EU? A Kuznets Curve Approach
NMS-10 在欧盟可持续发展吗?
Renormalization of position space amplitudes in a massless QFT
  • DOI:
    10.1134/s1063779617020083
  • 发表时间:
    2017-03-12
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Ivan Todorov
  • 通讯作者:
    Ivan Todorov
Superconnection in the spin factor approach to particle physics
  • DOI:
    10.1016/j.nuclphysb.2020.115065
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michel Dubois-Violette;Ivan Todorov
  • 通讯作者:
    Ivan Todorov
Biochemical and Technological Characteristics of Triticum aestivum Lines from Two Crosses between High and Low Breadmaking Quality Cultivars
  • DOI:
    10.1007/bf03543525
  • 发表时间:
    1998-12-31
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Peter Ivanov;Ivan Todorov;Ivanka Stoeva;Irina Ivanova
  • 通讯作者:
    Irina Ivanova

Ivan Todorov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ivan Todorov', 18)}}的其他基金

CIF: Small: Fundamental limits in ambiguous communication
CIF:小:模糊沟通的基本限制
  • 批准号:
    2115071
  • 财政年份:
    2021
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Standard Grant
Zero-error quantum information and operator theory: emerging links
零错误量子信息和算子理论:新兴链接
  • 批准号:
    EP/K032763/1
  • 财政年份:
    2013
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Research Grant
Operator Multipliers
运算符乘数
  • 批准号:
    EP/D050677/1
  • 财政年份:
    2006
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Research Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Free Analysis: Exploring the Interactions between Operator Theory and Noncommutative Function Theory
自由分析:探索算子理论与非交换函数论之间的相互作用
  • 批准号:
    2154494
  • 财政年份:
    2022
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Standard Grant
Noncommutative Szego Theory, Moment Problems, and Related Problems in Noncommutative Analysis
非交换 Szego 理论、矩问题以及非交换分析中的相关问题
  • 批准号:
    2751175
  • 财政年份:
    2022
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Studentship
Noncommutative Analysis with Applications to Quantum Information Theory
非交换分析及其在量子信息论中的应用
  • 批准号:
    2154903
  • 财政年份:
    2022
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Standard Grant
A New Approach and Development to Singular Integrals in Noncommutative Harmonic Analysis - Fusion of Real Analysis and Representation Theory
非交换调和分析中奇异积分的新方法和发展——实分析与表示论的融合
  • 批准号:
    20K03638
  • 财政年份:
    2020
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Noncommutative Analysis and Functional Analytic Group Theory
非交换分析和泛函分析群论
  • 批准号:
    17K05277
  • 财政年份:
    2017
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Noncommutative Analysis and Functional Analytic Group Theory
非交换分析和泛函分析群论
  • 批准号:
    26400114
  • 财政年份:
    2014
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Noncommutative Harmonic Analysis and Quantum Information Theory
非交换调和分析与量子信息论
  • 批准号:
    410205-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Selected problems in perturbation theory, Schur multipliers, and Hankel and Toeplitz Operators in Noncommutative Analysis
非交换分析中的微扰理论、Schur 乘子以及 Hankel 和 Toeplitz 算子的精选问题
  • 批准号:
    1300924
  • 财政年份:
    2013
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Continuing Grant
Noncommutative Harmonic Analysis and Quantum Information Theory
非交换调和分析与量子信息论
  • 批准号:
    410205-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Noncommutative Harmonic Analysis and Quantum Information Theory
非交换调和分析与量子信息论
  • 批准号:
    410205-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了