Quantum algebras with supersymmetries
具有超对称性的量子代数
基本信息
- 批准号:DP240101572
- 负责人:
- 金额:$ 26.97万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2024
- 资助国家:澳大利亚
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project aims to make fundamental advances in the theory of quantum algebras. It will develop explicit
structure and representation theory of major classes of quantum algebras which are of great importance to
quantum field theory and integrable models with supersymmetries. The intended outcomes include a solution of
the outstanding classification problem for representations of quantum algebras with supersymmetries, which has
remained open for the last two decades. It will involve newly-developed methods within the theory of quantum
groups, and both the methods and classification will bring new mathematical instruments for the advance of
supesymmetric conformal field theory and soliton spin chain models.
该项目的目标是在量子代数理论方面取得根本性进展。它会发展出明确的
结构和表示理论的主要类别的量子代数是非常重要的,
量子场论与超对称可积模型预期成果包括解决以下问题:
具有超对称性的量子代数表示的突出分类问题,
在过去的二十年里一直开放。它将涉及量子理论中新发展的方法
这两种方法和分类都将为促进数学的发展带来新的数学工具。
超对称共形场论和孤立子自旋链模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Alexander Molev其他文献
Prof Alexander Molev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Alexander Molev', 18)}}的其他基金
Classical and affine W-algebras
经典和仿射 W 代数
- 批准号:
DP150100789 - 财政年份:2015
- 资助金额:
$ 26.97万 - 项目类别:
Discovery Projects
Vertex algebras and representations of quantum groups
顶点代数和量子群的表示
- 批准号:
DP110100396 - 财政年份:2011
- 资助金额:
$ 26.97万 - 项目类别:
Discovery Projects
Quantum algebras: their symmetries, invariants and representations
量子代数:它们的对称性、不变量和表示
- 批准号:
DP0878914 - 财政年份:2008
- 资助金额:
$ 26.97万 - 项目类别:
Discovery Projects
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Standard Grant
Categorification and KLR algebras
分类和 KLR 代数
- 批准号:
DP240101809 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Discovery Projects
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Continuing Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Standard Grant
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
- 批准号:
2350049 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Continuing Grant
Conference: Young Mathematicians in C*-Algebras 2024
会议:C*-代数中的青年数学家 2024
- 批准号:
2404675 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Standard Grant
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shuffle algebras and vertex models
洗牌代数和顶点模型
- 批准号:
DP240101787 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Discovery Projects
Approximation properties in von Neumann algebras
冯·诺依曼代数中的近似性质
- 批准号:
2400040 - 财政年份:2024
- 资助金额:
$ 26.97万 - 项目类别:
Standard Grant