Permutation groups where non-trivial elements have few fixed points
非平凡元素几乎没有不动点的置换群
基本信息
- 批准号:251621688
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the first phase of our cooperation Kay Magaard and I produced a few good results and some more precise questions emerged that we plan to answer in 2014.The basis of our project is a result of Schoeneberg's. It says that all fixed points of a non-trivial automorphism of an algebraic curve that fixes at least five points is a Weierstrass point.With this theorem in mind, Kay Magaard and I started to investigate permutation groups where every non-trivial element has few fixed points, hence being an obstruction to finding Weierstrass points with Schoeneberg's result. It is our aim to understand the structure of such groups and to classify the simple groups with this property completely.
在我们合作的第一阶段,Kay Magaard和我取得了一些不错的成果,并提出了一些更精确的问题,我们计划在2014年回答这些问题。我们项目的基础是Schoeneberg的结果。它说在代数曲线的非平凡自同构中,固定至少五个点的所有不动点都是Weierstrass点。带着这个定理,Kay Magaard和我开始研究置换群,其中每个非平凡元素都有几个不动点,因此阻碍了用Schoeneberg的结果找到Weierstrass点。我们的目标是了解这类群的结构,并对具有这一性质的简单群进行完全的分类。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transitive permutation groups where nontrivial elements have at most two fixed points
传递置换群,其中非平凡元素至多有两个不动点
- DOI:10.1016/j.jpaa.2014.04.027
- 发表时间:2015
- 期刊:
- 影响因子:0.8
- 作者:Magaard;Waldecker
- 通讯作者:Waldecker
Transitive permutation groups with trivial four point stabilizers
具有平凡四点稳定器的传递置换群
- DOI:10.1515/jgth-2015-0016
- 发表时间:2015
- 期刊:
- 影响因子:0.5
- 作者:Magaard;Waldecker
- 通讯作者:Waldecker
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Rebecca Anne Hedwig Waldecker其他文献
Professorin Dr. Rebecca Anne Hedwig Waldecker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Rebecca Anne Hedwig Waldecker', 18)}}的其他基金
Expanding the toolbox for search algorithms
扩展搜索算法的工具箱
- 批准号:
450136794 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Trust in forensic science evidence in the criminal justice system: The experience of marginalised groups
刑事司法系统中对法医科学证据的信任:边缘群体的经历
- 批准号:
ES/Y010639/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
- 批准号:
2343087 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
-- - 项目类别:
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
- 批准号:
2414332 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
- 批准号:
2402553 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Zassenhaus Groups and Friends Conference 2024
会议:2024 年 Zassenhaus 团体和朋友会议
- 批准号:
2346615 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
- 批准号:
10824767 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
- 批准号:
23K25768 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)