Statistical Modeling for Complex Networks

复杂网络的统计建模

基本信息

  • 批准号:
    2210439
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Recent advances in technology have led to an explosion of data being collected in many areas of application. Many of these data have complex structures, in the form of text, images, video, audio, streaming data, etc, for example. This project focuses on one important type of complex data structure, networks, or graphs. Such data are common in diverse engineering and scientific areas, including biology, medicine, sociology, computer science, electrical engineering, economics, and so on. While there has been extensive research on networks, much of it only deals with the presence/absence of pairwise relationships. However, real-world relationships are often more complicated. The current research program aims to go beyond the pairwise presence/absence relationship and develop statistical methods to characterize and model more complex network structures. The research program will make significant contributions in several areas, including Statistics, Biology, Computer Science, Healthcare, Electrical Engineering, Medicine, Physics, Psychology, and Sociology. The investigators plan to train STEM workforce members by mentoring undergraduate and graduate students, developing a new course, and organizing interdisciplinary workshops. The educational program also includes substantial initiatives in maintaining a research group with a significant portion of women and continuing to actively recruit and support a diverse group of students.The research aims to develop new statistical methodologies and associated theory that incorporate higher-order structures into network modeling. Such data structures are becoming increasingly common in various fields. Specifically, the investigators aim to study three different but related problems: a) leveraging subgraphs or higher-order structures in a network and developing new community detection methods for networks with dependent edges; b) developing novel latent space models and theory that accommodate the well-known balance theory, i.e., "the friend of my friend is my friend" and "the enemy of my enemy is my friend," for signed networks; c) developing new latent space models and theory for the less studied, though commonly encountered, polyadic relations that involve more than two nodes simultaneously, i.e., hypergraphs, using determinantal point processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近技术的进步导致了在许多应用领域收集数据的爆炸式增长。其中许多数据具有复杂的结构,例如以文本、图像、视频、音频、流数据等形式存在。这个项目的重点是一种重要的复杂数据结构,网络,或图。这些数据在不同的工程和科学领域很常见,包括生物学、医学、社会学、计算机科学、电气工程、经济学等。虽然有很多关于人际网络的研究,但其中大部分只涉及到存在/不存在成对关系。然而,现实世界的关系往往更复杂。目前的研究计划旨在超越成对存在/缺席关系,并开发统计方法来表征和建模更复杂的网络结构。该研究项目将在统计学、生物学、计算机科学、医疗保健、电子工程、医学、物理学、心理学和社会学等领域做出重大贡献。研究人员计划通过指导本科生和研究生、开发新课程和组织跨学科研讨会来培训STEM工作人员。教育计划还包括实质性的举措,以维持一个有很大一部分女性的研究小组,并继续积极招募和支持多样化的学生群体。该研究旨在开发新的统计方法和相关理论,将高阶结构纳入网络建模。这种数据结构在各个领域变得越来越普遍。具体而言,研究人员旨在研究三个不同但相关的问题:a)利用网络中的子图或高阶结构,并为具有依赖边的网络开发新的社区检测方法;B)发展新的潜在空间模型和理论,以适应著名的平衡理论,即“我朋友的朋友是我的朋友”,“我敌人的敌人是我的朋友”,对于签名网络;C)开发新的潜在空间模型和理论,用于研究较少,但经常遇到的,同时涉及两个以上节点的多向关系,即使用行列式点过程的超图。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ji Zhu其他文献

Group Re-identification with Group Context Graph Neural Networks
使用组上下文图神经网络进行组重新识别
  • DOI:
    10.1109/tmm.2020.3013531
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Ji Zhu;Hua Yang;Weiyao Lin;Nian Liu;Jia Wang;Wenjun Zhang
  • 通讯作者:
    Wenjun Zhang
Description-based person search with multi-grained matching networks
具有多粒度匹配网络的基于描述的人员搜索
  • DOI:
    10.1016/j.displa.2021.102039
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Ji Zhu;Hua Yang;Jia Wang;Wenjun Zhang
  • 通讯作者:
    Wenjun Zhang
High-dimensional Factor Analysis for Network-linked Data
网络链接数据的高维因子分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinming Li;Gongjun Xu;Ji Zhu
  • 通讯作者:
    Ji Zhu
Pelvic recurrence after definitive surgery for locally advanced rectal cancer: a retrospective investigation of implications for precision radiotherapy field design
局部晚期直肠癌根治性手术后盆腔复发:精准放疗野设计影响的回顾性研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chao Li;Y. Zhu;T. Tong;Ye Xu;Y. Guan;Jingwen Wang;Huankun Wang;Ji Zhu
  • 通讯作者:
    Ji Zhu
Solving Capacitated Vehicle Routing Problem by an Improved Genetic Algorithm with Fuzzy C-Means Clustering
  • DOI:
    10.1155/2022/8514660
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ji Zhu
  • 通讯作者:
    Ji Zhu

Ji Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ji Zhu', 18)}}的其他基金

Collaborative Research: New Statistical Learning for Complex Heterogeneous Data
协作研究:复杂异构数据的新统计学习
  • 批准号:
    1821243
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Statistical Methods for Data with Network Structure
网络结构数据的统计方法
  • 批准号:
    1407698
  • 财政年份:
    2014
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Conference on Statistical Learning and Data Mining
统计学习与数据挖掘会议
  • 批准号:
    1203216
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Statistical Learning from Data with Graph/Network Structures
职业:从具有图/网络结构的数据中进行统计学习
  • 批准号:
    0748389
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Generalized Variable Selection With Applications To Functional Data Analysis And Other Problems
协作研究:广义变量选择及其在函数数据分析和其他问题中的应用
  • 批准号:
    0705532
  • 财政年份:
    2007
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Flexible Classification and Regression
灵活的分类和回归
  • 批准号:
    0505432
  • 财政年份:
    2005
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

New statistical methods and software for modeling complex multivariate survival data with large-scale covariates
用于对具有大规模协变量的复杂多变量生存数据进行建模的新统计方法和软件
  • 批准号:
    10631139
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
Statistical and agent-based modeling of complex microbial systems: a means for understanding enteric disease transmission among children in urban neighborhoods of Kenya
复杂微生物系统的统计和基于主体的建模:了解肯尼亚城市社区儿童肠道疾病传播的一种手段
  • 批准号:
    10671983
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
New statistical methods and software for modeling complex multivariate survival data with large-scale covariates
用于对具有大规模协变量的复杂多变量生存数据进行建模的新统计方法和软件
  • 批准号:
    10453875
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
Excellence in Research: Statistical Network Modeling and Inference for Complex Data
卓越的研究:复杂数据的统计网络建模和推理
  • 批准号:
    2100729
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Statistical and agent-based modeling of complex microbial systems: a means for..
复杂微生物系统的统计和基于代理的建模:一种手段......
  • 批准号:
    10615095
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
Statistical and agent-based modeling of complex microbial systems: a means for..
复杂微生物系统的统计和基于代理的建模:一种手段......
  • 批准号:
    10399592
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
Statistical and agent-based modeling of complex microbial systems: a means for..
复杂微生物系统的统计和基于代理的建模:一种手段......
  • 批准号:
    10227256
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
Statistical Modeling and Analysis for Multivariate and Nonlinear Time Series and for Complex Survey Data
多元和非线性时间序列以及复杂调查数据的统计建模和分析
  • 批准号:
    RGPIN-2015-04704
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Advancing Latent Variable Statistical Modeling for the Analysis of Big and Complex Longitudinal Data to Promote Personalized Learning
职业:推进潜变量统计模型分析大而复杂的纵向数据以促进个性化学习
  • 批准号:
    1848451
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Statistical Modeling Methodology on Boolean Functions for Conquering Cancer Complex Ecosystem
征服癌症复杂生态系统的布尔函数统计建模方法
  • 批准号:
    18K18151
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了