Flexible Classification and Regression

灵活的分类和回归

基本信息

项目摘要

The research aims to combine statistical and computational considerations in designing new and useful predictive modeling tools and algorithms. Specifically, the research involves the development of: a) new statistically motivated multi-class boosting algorithms, based on a family of multi-class loss functions and forward stagewise additive modeling; b) a family of (loss, penalty) pairs that give piecewise linear solution paths, and yield modeling tools for both regression and classification which are robust, adaptable and efficient; c) a general theory and efficient algorithms for solving an L1 regularized problem in infinite dimensional predictor space.With the advent of modern technologies, the needs for predictive modeling tools have been increasing rapidly. Consequently, many new ideas and methods have been finding their way into the statistical community in recent years. These are mainly related to the design and analysis of useful techniques for modeling of high dimensional, noisy data, and these techniques are now being applied to bioinformatics, high energy physics, speech recognition, text mining, and a wide range of other important practical problems. This research aims to push these developments forward along the line of regularization in predictive modeling, and is expected to have broader impacts on the practice and education in the domains of statistics, machine learning and data mining.
该研究旨在结合统计和计算的考虑,设计新的和有用的预测建模工具和算法。具体来说,研究包括:a)基于一系列多类损失函数和前向阶段加性建模的新的统计激励多类增强算法;B)一组(损失,惩罚)对,给出分段线性解路径,并产生回归和分类的建模工具,这些工具具有鲁棒性,适应性强且高效;c)求解无限维预测空间中L1正则化问题的一般理论和有效算法。随着现代技术的出现,对预测建模工具的需求迅速增加。因此,近年来,许多新的思想和方法已经进入统计界。这些主要与设计和分析高维、噪声数据建模的有用技术有关,这些技术现在被应用于生物信息学、高能物理、语音识别、文本挖掘和其他广泛的重要实际问题。本研究旨在沿着预测建模的正则化方向推动这些发展,并有望对统计学、机器学习和数据挖掘领域的实践和教育产生更广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ji Zhu其他文献

Group Re-identification with Group Context Graph Neural Networks
使用组上下文图神经网络进行组重新识别
  • DOI:
    10.1109/tmm.2020.3013531
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Ji Zhu;Hua Yang;Weiyao Lin;Nian Liu;Jia Wang;Wenjun Zhang
  • 通讯作者:
    Wenjun Zhang
Description-based person search with multi-grained matching networks
具有多粒度匹配网络的基于描述的人员搜索
  • DOI:
    10.1016/j.displa.2021.102039
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Ji Zhu;Hua Yang;Jia Wang;Wenjun Zhang
  • 通讯作者:
    Wenjun Zhang
High-dimensional Factor Analysis for Network-linked Data
网络链接数据的高维因子分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinming Li;Gongjun Xu;Ji Zhu
  • 通讯作者:
    Ji Zhu
Pelvic recurrence after definitive surgery for locally advanced rectal cancer: a retrospective investigation of implications for precision radiotherapy field design
局部晚期直肠癌根治性手术后盆腔复发:精准放疗野设计影响的回顾性研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chao Li;Y. Zhu;T. Tong;Ye Xu;Y. Guan;Jingwen Wang;Huankun Wang;Ji Zhu
  • 通讯作者:
    Ji Zhu
Solving Capacitated Vehicle Routing Problem by an Improved Genetic Algorithm with Fuzzy C-Means Clustering
  • DOI:
    10.1155/2022/8514660
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ji Zhu
  • 通讯作者:
    Ji Zhu

Ji Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ji Zhu', 18)}}的其他基金

Statistical Modeling for Complex Networks
复杂网络的统计建模
  • 批准号:
    2210439
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: New Statistical Learning for Complex Heterogeneous Data
协作研究:复杂异构数据的新统计学习
  • 批准号:
    1821243
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Statistical Methods for Data with Network Structure
网络结构数据的统计方法
  • 批准号:
    1407698
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference on Statistical Learning and Data Mining
统计学习与数据挖掘会议
  • 批准号:
    1203216
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Statistical Learning from Data with Graph/Network Structures
职业:从具有图/网络结构的数据中进行统计学习
  • 批准号:
    0748389
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Generalized Variable Selection With Applications To Functional Data Analysis And Other Problems
协作研究:广义变量选择及其在函数数据分析和其他问题中的应用
  • 批准号:
    0705532
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Functional Regression and Classification for Data Supported on Complex Geometries
复杂几何形状支持的数据的函数回归和分类
  • 批准号:
    2210064
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Robust sparse partial least squares regression and classification
鲁棒稀疏偏最小二乘回归和分类
  • 批准号:
    487299-2016
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Robust sparse partial least squares regression and classification
鲁棒稀疏偏最小二乘回归和分类
  • 批准号:
    487299-2016
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Robust sparse partial least squares regression and classification
鲁棒稀疏偏最小二乘回归和分类
  • 批准号:
    487299-2016
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Robust sparse partial least squares regression and classification
鲁棒稀疏偏最小二乘回归和分类
  • 批准号:
    487299-2016
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
RUI: Classification, regression, and density estimation with missing variables
RUI:分类、回归和缺失变量的密度估计
  • 批准号:
    1407400
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Establishment of classification and regression tree model for assessing of a risk for future occurence of life-style related disease using a community-based cohort data.
建立分类和回归树模型,用于使用基于社区的队列数据评估未来发生生活方式相关疾病的风险。
  • 批准号:
    25460768
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classification d'événements en vidéos par la regression logistique multinomiale
多项回归逻辑视频中的分类事件
  • 批准号:
    429633-2012
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Regression, classification, and bayesian networks
回归、分类和贝叶斯网络
  • 批准号:
    5172-2005
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Building flexible tree models and ensemble tree models for statistical learning in classification, regression and failure time data analysis
构建灵活的树模型和集成树模型,用于分类、回归和故障时间数据分析中的统计学习
  • 批准号:
    311980-2008
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了