CAREER: Statistical Learning from Data with Graph/Network Structures
职业:从具有图/网络结构的数据中进行统计学习
基本信息
- 批准号:0748389
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research aims to develop new statistical methodologies and associated theory that incorporate the network/graph structure in the data. Such data are becoming increasingly common in various fields. Specifically, the investigator studies three different but related problems: a) statistical learning on networks via random walks, which includes semi-supervised classification for two and multiple classes, clustering, and analysis of categorical data; b) learning network structures, which deals with the situation where one is interested in identifying the underlying network structure from the data; c) variable selection with structural constraints, which deals with variable selection when there is inherent structure among the variables or parameters.Recent advances in computing and measurement technologies have led to an explosion in the amount of data that are being collected in all areas of application. Much of these data have complex structure, in the form of text, images, video, audio, streaming data, and so on. This proposal focuses on one important class of problems, viz, data with network or graph structure. Such data are common in diverse engineering and scientific areas, such as biology, computer science, electrical engineering, economics, sociology and so on. While there has been extensive research on networks (primarily outside the field of Statistics), much of it deals with characterizing and modeling network structures. The goal of the current research program is to exploit the network structure as additional information and develop statistical methods that take into account the structure of relationships between the data. The research program will make significant contributions in several areas, including Statistics, Biology, Computer Science, Electrical Engineering, IOE, Physics, Psychology and Sociology. The educational program also includes substantial initiatives that will involve undergraduate and graduate students and expose them to state-of-the-art research in the topics related to the proposal. These include new courses, summer workshops, mentoring, and software development.
该研究旨在开发新的统计方法和相关理论,将网络/图形结构纳入数据中。 这些数据在各个领域越来越普遍。 具体来说,研究者研究了三个不同但相关的问题:a)通过随机游走的网络统计学习,包括两个和多个类别的半监督分类,聚类和分类数据的分析; B)学习网络结构,处理人们有兴趣从数据中识别底层网络结构的情况; c)具有结构约束的变量选择,当变量或参数之间存在固有结构时处理变量选择。计算和测量技术的最新进展导致了在所有应用领域中收集的数据量的爆炸式增长。 这些数据大多具有复杂的结构,以文本、图像、视频、音频、流数据等形式存在,本文主要研究一类重要的问题,即具有网络或图结构的数据。 这些数据在不同的工程和科学领域中很常见,例如生物学、计算机科学、电子工程、经济学、社会学等。虽然对网络的研究已经很广泛(主要是在统计学领域之外),但其中大部分都涉及网络结构的表征和建模。 目前研究计划的目标是利用网络结构作为额外的信息,并开发考虑到数据之间关系结构的统计方法。 该研究计划将在几个领域做出重大贡献,包括统计学,生物学,计算机科学,电气工程,IOE,物理学,心理学和社会学。 教育计划还包括大量的举措,将涉及本科生和研究生,并使他们接触到与提案相关的主题的最先进的研究。 这些包括新课程,暑期研讨会,指导和软件开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ji Zhu其他文献
Group Re-identification with Group Context Graph Neural Networks
使用组上下文图神经网络进行组重新识别
- DOI:
10.1109/tmm.2020.3013531 - 发表时间:
2020 - 期刊:
- 影响因子:7.3
- 作者:
Ji Zhu;Hua Yang;Weiyao Lin;Nian Liu;Jia Wang;Wenjun Zhang - 通讯作者:
Wenjun Zhang
Description-based person search with multi-grained matching networks
具有多粒度匹配网络的基于描述的人员搜索
- DOI:
10.1016/j.displa.2021.102039 - 发表时间:
2021-09 - 期刊:
- 影响因子:4.3
- 作者:
Ji Zhu;Hua Yang;Jia Wang;Wenjun Zhang - 通讯作者:
Wenjun Zhang
High-dimensional Factor Analysis for Network-linked Data
网络链接数据的高维因子分析
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jinming Li;Gongjun Xu;Ji Zhu - 通讯作者:
Ji Zhu
Pelvic recurrence after definitive surgery for locally advanced rectal cancer: a retrospective investigation of implications for precision radiotherapy field design
局部晚期直肠癌根治性手术后盆腔复发:精准放疗野设计影响的回顾性研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Chao Li;Y. Zhu;T. Tong;Ye Xu;Y. Guan;Jingwen Wang;Huankun Wang;Ji Zhu - 通讯作者:
Ji Zhu
Solving Capacitated Vehicle Routing Problem by an Improved Genetic Algorithm with Fuzzy C-Means Clustering
- DOI:
10.1155/2022/8514660 - 发表时间:
2022-02 - 期刊:
- 影响因子:0
- 作者:
Ji Zhu - 通讯作者:
Ji Zhu
Ji Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ji Zhu', 18)}}的其他基金
Statistical Modeling for Complex Networks
复杂网络的统计建模
- 批准号:
2210439 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: New Statistical Learning for Complex Heterogeneous Data
协作研究:复杂异构数据的新统计学习
- 批准号:
1821243 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Statistical Methods for Data with Network Structure
网络结构数据的统计方法
- 批准号:
1407698 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Conference on Statistical Learning and Data Mining
统计学习与数据挖掘会议
- 批准号:
1203216 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Variable Selection With Applications To Functional Data Analysis And Other Problems
协作研究:广义变量选择及其在函数数据分析和其他问题中的应用
- 批准号:
0705532 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
- 批准号:
2340241 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Statistical Learning with Recursive Partitioning: Algorithms, Accuracy, and Applications
职业:递归分区的统计学习:算法、准确性和应用
- 批准号:
2239448 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Domain-aware Statistical Learning
职业:领域感知统计学习
- 批准号:
2143695 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Statistical Learning from a Modern Perspective: Over-parameterization, Regularization, and Generalization
职业:现代视角下的统计学习:过度参数化、正则化和泛化
- 批准号:
2143215 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Understanding metal/support interactions in catalysis with statistical learning
职业:通过统计学习了解催化中金属/载体的相互作用
- 批准号:
2143941 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Federated Learning: Statistical Optimality and Provable Security
职业:联邦学习:统计最优性和可证明的安全性
- 批准号:
2144593 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Designing Meaningful Learning Experiences for Statistical Literacy in Secondary Mathematics
职业:为中学数学中的统计素养设计有意义的学习体验
- 批准号:
2143816 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
- 批准号:
2046874 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Statistical Paradigms Reconciling Empirical Surprises in Modern Machine Learning
职业:新的统计范式调和现代机器学习中的经验惊喜
- 批准号:
2042473 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Nonconvex Optimization for Statistical Estimation and Learning: Conditioning, Dynamics, and Nonsmoothness
职业:统计估计和学习的非凸优化:条件、动力学和非平滑性
- 批准号:
2047637 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant