Conference on Statistical Learning and Data Mining

统计学习与数据挖掘会议

基本信息

  • 批准号:
    1203216
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-01-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

An international conference on "Statistical Learning and Data Mining" will be held June 4-7, 2012 on the Ann Arbor campus of the University of Michigan. The objective is to bring together researchers in statistical learning and data mining from academia, industry, and government in a relaxed and stimulating atmosphere focused on the development of statistical learning theory, methods and applications. The conference will feature three plenary talks by internationally prominent researchers whose work are cutting-edge in the field of statistical learning and data mining. Eighteen invited breakout sessions, each with three talks, will cover additional topics with great interest to the field. These include Computational Advertisement, Function Estimation, High-dimensional Methods, Structured Learning, Graphical Models, Learning Theory, Model Selection, Covariance Estimation, Network Analysis, Computational Biology, Signal and Image Processing and Data Mining Applications. There will also be seven contributed paper sessions and two contributed poster sessions where junior investigators and graduate students are expected to participate.Statistical learning is a relatively new discipline, evolving from machine learning methods of artificial intelligence and multivariate statistics. The general goals of statistical learning are discovery, classification and prediction, often in very high, effectively infinite, dimensional contexts. The advent of powerful computers with accompanying massive data sets has brought the discipline to the forefront of statistical theory and practice. The major goal of the proposed conference is to present some of the most important recent advances in the field and to discuss future research directions. A major part of the conference focuses on bringing statistical research leaders together with students, postdoctoral fellows, and young academics in a stimulating environment. The funding from the NSF will mainly support graduate students and junior researchers in American universities to attend the conference and present either a talk or a poster. The conference is expected to accelerate interactions and collaborations among researchers in the important area of statistical learning and data mining, and thereby lead to the development of new and more effective methods of modeling and inference.
关于“统计学习和数据挖掘”的国际会议将于2012年6月4日至7日在密歇根大学安娜堡校区举行。会议的目标是将来自学术界、工业界和政府的统计学习和数据挖掘领域的研究人员聚集在一起,营造一个轻松刺激的氛围,专注于统计学习理论、方法和应用的发展。会议将由国际知名的研究人员进行三次全体会议,他们的工作在统计学习和数据挖掘领域处于前沿地位。18个分组会议,每个会议有三个演讲,将涵盖对该领域非常感兴趣的其他主题。其中包括计算广告、函数估计、高维方法、结构化学习、图形模型、学习理论、模型选择、协方差估计、网络分析、计算生物学、信号和图像处理以及数据挖掘应用。还将有七场论文会议和两场海报会议,预计初级研究人员和研究生将参加。统计学习是一门相对较新的学科,从人工智能和多元统计的机器学习方法发展而来。统计学习的一般目标是发现、分类和预测,通常是在非常高的、实际上无限的维度环境中。功能强大的计算机的出现以及随之而来的海量数据集将这门学科带到了统计理论和实践的前沿。本次会议的主要目标是介绍该领域一些最重要的最新进展,并讨论未来的研究方向。会议的一个主要部分是将统计研究的领导者与学生、博士后研究员和年轻学者聚集在一个刺激的环境中。NSF的资金将主要支持美国大学的研究生和初级研究人员参加会议并发表演讲或海报。会议预计将加速统计学习和数据挖掘重要领域研究人员之间的互动和合作,从而导致新的和更有效的建模和推理方法的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ji Zhu其他文献

Group Re-identification with Group Context Graph Neural Networks
使用组上下文图神经网络进行组重新识别
  • DOI:
    10.1109/tmm.2020.3013531
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Ji Zhu;Hua Yang;Weiyao Lin;Nian Liu;Jia Wang;Wenjun Zhang
  • 通讯作者:
    Wenjun Zhang
Description-based person search with multi-grained matching networks
具有多粒度匹配网络的基于描述的人员搜索
  • DOI:
    10.1016/j.displa.2021.102039
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Ji Zhu;Hua Yang;Jia Wang;Wenjun Zhang
  • 通讯作者:
    Wenjun Zhang
High-dimensional Factor Analysis for Network-linked Data
网络链接数据的高维因子分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinming Li;Gongjun Xu;Ji Zhu
  • 通讯作者:
    Ji Zhu
Pelvic recurrence after definitive surgery for locally advanced rectal cancer: a retrospective investigation of implications for precision radiotherapy field design
局部晚期直肠癌根治性手术后盆腔复发:精准放疗野设计影响的回顾性研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chao Li;Y. Zhu;T. Tong;Ye Xu;Y. Guan;Jingwen Wang;Huankun Wang;Ji Zhu
  • 通讯作者:
    Ji Zhu
Solving Capacitated Vehicle Routing Problem by an Improved Genetic Algorithm with Fuzzy C-Means Clustering
  • DOI:
    10.1155/2022/8514660
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ji Zhu
  • 通讯作者:
    Ji Zhu

Ji Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ji Zhu', 18)}}的其他基金

Statistical Modeling for Complex Networks
复杂网络的统计建模
  • 批准号:
    2210439
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: New Statistical Learning for Complex Heterogeneous Data
协作研究:复杂异构数据的新统计学习
  • 批准号:
    1821243
  • 财政年份:
    2018
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Statistical Methods for Data with Network Structure
网络结构数据的统计方法
  • 批准号:
    1407698
  • 财政年份:
    2014
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
CAREER: Statistical Learning from Data with Graph/Network Structures
职业:从具有图/网络结构的数据中进行统计学习
  • 批准号:
    0748389
  • 财政年份:
    2008
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Generalized Variable Selection With Applications To Functional Data Analysis And Other Problems
协作研究:广义变量选择及其在函数数据分析和其他问题中的应用
  • 批准号:
    0705532
  • 财政年份:
    2007
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Flexible Classification and Regression
灵活的分类和回归
  • 批准号:
    0505432
  • 财政年份:
    2005
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant

相似海外基金

Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging
智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究
  • 批准号:
    2342215
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
  • 批准号:
    2340241
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
  • 批准号:
    495410
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886365
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886852
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Studentship
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
  • 批准号:
    2334261
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
  • 批准号:
    2244160
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
  • 批准号:
    10714930
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
Doctoral Dissertation Research: The Effects of Language Experience on Statistical Learning in Infants and Adults
博士论文研究:语言体验对婴儿和成人统计学习的影响
  • 批准号:
    2234422
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了