Collaborative Research: Generalized Variable Selection With Applications To Functional Data Analysis And Other Problems
协作研究:广义变量选择及其在函数数据分析和其他问题中的应用
基本信息
- 批准号:0705532
- 负责人:
- 金额:$ 8.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When variable selection is performed in situations where the number of predictors is significantly larger than the number of observations, one generally assumes sparsity in the regression coefficients, i.e., most of the coefficients are zero. However, there turn out to be many practical applications where, rather than the parameters being sparse, certain predefined functions of the parameters are sparse. This is referred to as Generalized Variable Selection (GVS). Specifically, the investigators study four important applications of GVS in areas as diverse as functional regression, principal component analysis (both standard and functional), multivariate non-parametric regression, and transcription regulation network problems for microarray experiments.The investigators have direct connections in many fields outside statistics such as Biology, Finance, Manufacturing, Marketing, Medicine and Physics. The investigators believe that statisticians can, and should, make important contributions in all these areas. With the advent of new technologies, such as bar code scanners and microarrays etc., enormous data sets are becoming increasingly common in these and many other fields. Such vast quantities of data have made it important to develop statistical methodologies that can produce sparse and interpretable solutions. The investigators aim to systematically develop software to implement the proposed methods through free software packages, like R, and then make them readily available and publicize them in all these fields. The investigators believe that, because of the interpretive power of their proposed methods, once the software is available, it will be widely utilized.
当在预测因子的数量显著大于观测值的数量的情况下执行变量选择时,通常假设回归系数中的稀疏性,即,大多数系数为零。然而,在许多实际应用中,参数不是稀疏的,而是参数的某些预定义函数是稀疏的。这被称为广义变量选择(GVS)。具体来说,研究人员研究了GVS在不同领域的四个重要应用,如函数回归,主成分分析(标准和函数),多元非参数回归,以及微阵列实验的转录调控网络问题。研究人员在统计学之外的许多领域,如生物学,金融,制造业,市场营销,医学和物理学都有直接联系。调查人员认为,统计人员能够而且应该在所有这些领域作出重要贡献。随着新技术的出现,如条形码扫描仪和微阵列等,在这些领域和许多其它领域中,庞大的数据集正变得越来越普遍。如此大量的数据使得开发能够产生稀疏和可解释的解决方案的统计方法变得非常重要。研究人员的目标是系统地开发软件,通过自由软件包(如R)实现所提出的方法,然后使它们随时可用,并在所有这些领域推广。研究人员认为,由于他们提出的方法的解释能力,一旦软件可用,它将被广泛使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ji Zhu其他文献
Group Re-identification with Group Context Graph Neural Networks
使用组上下文图神经网络进行组重新识别
- DOI:
10.1109/tmm.2020.3013531 - 发表时间:
2020 - 期刊:
- 影响因子:7.3
- 作者:
Ji Zhu;Hua Yang;Weiyao Lin;Nian Liu;Jia Wang;Wenjun Zhang - 通讯作者:
Wenjun Zhang
Description-based person search with multi-grained matching networks
具有多粒度匹配网络的基于描述的人员搜索
- DOI:
10.1016/j.displa.2021.102039 - 发表时间:
2021-09 - 期刊:
- 影响因子:4.3
- 作者:
Ji Zhu;Hua Yang;Jia Wang;Wenjun Zhang - 通讯作者:
Wenjun Zhang
High-dimensional Factor Analysis for Network-linked Data
网络链接数据的高维因子分析
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jinming Li;Gongjun Xu;Ji Zhu - 通讯作者:
Ji Zhu
Pelvic recurrence after definitive surgery for locally advanced rectal cancer: a retrospective investigation of implications for precision radiotherapy field design
局部晚期直肠癌根治性手术后盆腔复发:精准放疗野设计影响的回顾性研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Chao Li;Y. Zhu;T. Tong;Ye Xu;Y. Guan;Jingwen Wang;Huankun Wang;Ji Zhu - 通讯作者:
Ji Zhu
Solving Capacitated Vehicle Routing Problem by an Improved Genetic Algorithm with Fuzzy C-Means Clustering
- DOI:
10.1155/2022/8514660 - 发表时间:
2022-02 - 期刊:
- 影响因子:0
- 作者:
Ji Zhu - 通讯作者:
Ji Zhu
Ji Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ji Zhu', 18)}}的其他基金
Statistical Modeling for Complex Networks
复杂网络的统计建模
- 批准号:
2210439 - 财政年份:2022
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: New Statistical Learning for Complex Heterogeneous Data
协作研究:复杂异构数据的新统计学习
- 批准号:
1821243 - 财政年份:2018
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Statistical Methods for Data with Network Structure
网络结构数据的统计方法
- 批准号:
1407698 - 财政年份:2014
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Conference on Statistical Learning and Data Mining
统计学习与数据挖掘会议
- 批准号:
1203216 - 财政年份:2012
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
CAREER: Statistical Learning from Data with Graph/Network Structures
职业:从具有图/网络结构的数据中进行统计学习
- 批准号:
0748389 - 财政年份:2008
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
- 批准号:
2210388 - 财政年份:2022
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
- 批准号:
2210337 - 财政年份:2022
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
- 批准号:
2100785 - 财政年份:2021
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
- 批准号:
2150486 - 财政年份:2021
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
- 批准号:
2100791 - 财政年份:2021
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
- 批准号:
2006612 - 财政年份:2020
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
CNS Core: Medium: Collaborative Research: Generalized Caching-As-A-Service
CNS 核心:媒介:协作研究:通用缓存即服务
- 批准号:
1955593 - 财政年份:2020
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
CNS Core: Medium: Collaborative Research: Generalized Caching-As-A-Service
CNS 核心:媒介:协作研究:通用缓存即服务
- 批准号:
1956229 - 财政年份:2020
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
- 批准号:
2006453 - 财政年份:2020
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Fiducial Inference in the Age of Data Science
协作研究:数据科学时代的广义基准推理
- 批准号:
1916125 - 财政年份:2019
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant