CIF: Small: Deep Stochasticity for Private Collaborative Deep Learning

CIF:小:私人协作深度学习的深度随机性

基本信息

  • 批准号:
    2215088
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

By now, Deep Learning is achieving unprecedented performance levels in many applications ranging from computer vision to natural language processing to drug design. Training models usually require large volumes of training data, said data being collected from multiple individuals/organizations to ensure heterogeneity since homogeneous data may lead to over-fitting. Training data often contain sensitive information, e.g., healthcare records, browsing history, or financial transactions, thereby posing privacy threats for the individuals from whom the data were collected. Although multi-machine collaborative learning, such as decentralized learning and federated learning, allegedly solves privacy concerns by never letting the raw training data leave the participating machines, recent studies have revealed a completely different picture: Not only can features of the training data be inferred from shared gradient/model updates, but even the raw data can be reversely inferred from these shared gradients. Moreover, adding noise to shared gradients, a de facto standard for achieving differential privacy, becomes effective only when the noise is sufficiently large, possibly leading to a degradation of the training accuracy. This project, instead, seeks to enable privacy protection for participating machines through judicious randomization that exploits the structure of collaborative learning algorithms and leverages their natural resiliency to error. The project will enrich the current curriculum by providing new modules on privacy-preserving decentralized learning for both undergraduate and graduate classes. Broadening Participation in Computing will be addressed through outreach activities involving minority students via Clemson PEER (Programs for Educational Enrichment and Retention) and WISE (Women in Science and Engineering). The project explores several different approaches to judiciously embed stochasticity at the algorithmic level, so-called deep stochasticity, in order to enable privacy protection in the collaborative learning process. The proposed approach exploits the natural resiliency of deep learning algorithms to parameter errors/noises, and enables privacy without compromising accuracy or incurring heavy computation/communication overheads with the flexibility to accommodate additional mechanisms like cryptography. The techniques are applicable to both parameter-server-free decentralized learning and to parameter-server facilitated federated learning. The main research thrusts center on the design of collaborative learning algorithms that use stochastic quantization schemes for inter-machine communications and random learning stepsizes in building the iterates. Rigorous analysis frameworks will be developed to quantitatively evaluate the strength of the privacy protection being achieved, and the theoretical results will be systematically validated through experiments with robot networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
到目前为止,深度学习在从计算机视觉到自然语言处理再到药物设计的许多应用中达到了前所未有的性能水平。训练模型通常需要大量的训练数据,所述数据从多个个人/组织收集以确保异质性,因为同质数据可能导致过度拟合。训练数据通常包含敏感信息,例如,医疗保健记录、浏览历史或金融交易,从而对收集数据的个人构成隐私威胁。尽管多机器协作学习,如分散学习和联邦学习,据称通过从不让原始训练数据离开参与机器来解决隐私问题,但最近的研究揭示了一个完全不同的画面:不仅可以从共享梯度/模型更新中推断训练数据的特征,甚至可以从这些共享梯度中推断原始数据。此外,将噪声添加到共享梯度(用于实现差分隐私的事实上的标准)仅在噪声足够大时才变得有效,这可能导致训练精度的降低。相反,该项目旨在通过明智的随机化来保护参与机器的隐私,这种随机化利用了协作学习算法的结构,并利用了它们对错误的自然弹性。该项目将丰富现有课程,为本科生和研究生班提供关于隐私保护分散学习的新模块。将通过克莱姆森(教育充实和保留方案)和WISE(科学和工程领域的妇女)涉及少数民族学生的外联活动,扩大对计算的参与。该项目探索了几种不同的方法,以明智地在算法层面嵌入随机性,即所谓的深度随机性,以便在协作学习过程中实现隐私保护。所提出的方法利用了深度学习算法对参数错误/噪声的自然弹性,并在不影响准确性或产生大量计算/通信开销的情况下实现隐私,同时灵活地适应加密等附加机制。这些技术既适用于无参数服务器的分散学习,也适用于参数服务器促进的联邦学习。主要的研究重点集中在协作学习算法的设计上,该算法使用随机量化方案进行机器间通信,并在构建迭代时使用随机学习步长。将开发严格的分析框架,以定量评估所实现的隐私保护的强度,并通过机器人网络的实验系统地验证理论结果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributed Optimization with Noisy Information Sharing
Differentially-Private Distributed Optimization with Guaranteed Optimality
Quantization Enabled Privacy Protection in Decentralized Stochastic Optimization
A Robust Dynamic Average Consensus Algorithm that Ensures both Differential Privacy and Accurate Convergence
Differentially-private Distributed Algorithms for Aggregative Games with Guaranteed Convergence
保证收敛的聚合博弈的差分私有分布式算法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongqiang Wang其他文献

Gold-Catalyzed Cyclization/Hydroboration of 1,6-Enynes: Synthesis of Bicyclo[3.1.0]hexane Boranes
金催化 1,6-烯炔的环化/硼氢化:双环[3.1.0]己烷硼烷的合成
  • DOI:
    10.1021/acs.orglett.2c03812
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Guanghui Wang;Yongqiang Wang;Zengzeng Li;Haotian Li;Mingwu Yu;Maofu Pang;Ximei Zhao
  • 通讯作者:
    Ximei Zhao
Effect of nonmagnetic substitution on the magnetic correlation of the frustrated Ca3CoMn1-xGaxO6 (0≤x≤0.2)
非磁性取代对受挫Ca3CoMn1-xGaxO6 (0≤x≤0.2)磁相关性的影响
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Gaoshang Gong;Chenfei Shi;Jinjin Guo;Gebru Zerihun;Yongqiang Wang;Yang Qiu;Yuling Su
  • 通讯作者:
    Yuling Su
Reversal and non-reversal ferroelectric polarizations in a Y-type hexaferrite
Y 型六角形铁氧体中的反转和非反转铁电极化
  • DOI:
    10.1039/c8tc05247f
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Yongqiang Wang;Shile Zhang;W. K. Zhu;Langsheng Ling;Lei Zhang;Zhe Qu;Li Pi;Wei Tong;Mingliang Tian
  • 通讯作者:
    Mingliang Tian
Temporal and spatial changes of ≥10℃ accumulated temperature in Huang-Huai-Hai River Basin, China
黄淮海流域10℃积温时空变化
Comparative study of magnesium and calcium in Codonopsis pilosula samples detected by CF-LIBS and LCGD-AES
CF-LIBS与LCGD-AES检测党参样品中镁、钙的对比研究
  • DOI:
    10.1016/j.microc.2017.11.011
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Yongqiang Wang;Maogen Su;Duixiong Sun;Chao Wu;Xiaomin Zhang;Quanfang Lu;Chenzhong Dong
  • 通讯作者:
    Chenzhong Dong

Yongqiang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongqiang Wang', 18)}}的其他基金

CIF: Small: Ensuring Accuracy in Differentially Private Decentralized Optimization
CIF:小:确保差分隐私去中心化优化的准确性
  • 批准号:
    2334449
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
FRR: Collaborative Research: Collaborative Learning for Multi-robot Systems with Model-enabled Privacy Protection and Safety Supervision
FRR:协作研究:具有模型支持的隐私保护和安全监督的多机器人系统协作学习
  • 批准号:
    2219487
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Harnessing Intrinsic Dynamics for Inherently Privacy-preserving Decentralized Optimization
合作研究:CIF:中:利用内在动力学实现固有隐私保护的去中心化优化
  • 批准号:
    2106293
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Encrypted control for privacy-preserving and secure cyber-physical systems
隐私保护和安全网络物理系统的加密控制
  • 批准号:
    1912702
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
EAGER: Control Theory for Real-time Privacy-preserving Consensus Control of Engineering Networks
EAGER:工程网络实时隐私保护共识控制的控制理论
  • 批准号:
    1824014
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CICI: RSARC: Secure Time for Cyberinfrastructure Security
CICI:RSARC:网络基础设施安全的安全时间
  • 批准号:
    1738902
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
STTR Phase I: Eco-Friendly Mass Production of Highly Conductive Graphene Sheets with Controlled Structures
STTR第一阶段:结构可控的高导电石墨烯片的环保大规模生产
  • 批准号:
    1346496
  • 财政年份:
    2014
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
STTR Phase I: Surface- and Structural Engineering of Colloidal Quantum Dots Towards Efficient and
STTR 第一阶段:胶体量子点的表面和结构工程,以实现高效和
  • 批准号:
    1010491
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
STTR Phase I: Magnetic Nanoparticle Microfluidics for High Efficient Capture, Separation and Concetration of Foodborne Pathogens
STTR 第一阶段:用于高效捕获、分离和浓缩食源性病原体的磁性纳米颗粒微流体
  • 批准号:
    0810626
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
SBIR Phase II: Development of Cadmium-Free, Water-Soluble and Multicolor Quantum Dots by Chemical Doping
SBIR 第二阶段:通过化学掺杂开发无镉、水溶性和多色量子点
  • 批准号:
    0823040
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

CIF: Small: MoDL: Interpreting Deep-Learned Error-Correcting Codes
CIF:小型:MoDL:解释深度学习纠错码
  • 批准号:
    2240532
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Deep Sparse Models: Analysis and Algorithms
合作研究:CIF:小型:深度稀疏模型:分析和算法
  • 批准号:
    2240708
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CIF: Small: Interpretable Machine Learning based on Deep Neural Networks: A Source Coding Perspective
CIF:小:基于深度神经网络的可解释机器学习:源编码视角
  • 批准号:
    2205004
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Deep Sparse Models: Analysis and Algorithms
合作研究:CIF:小型:深度稀疏模型:分析和算法
  • 批准号:
    2007649
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CIF: Small: Deep Stochastic Geometry: A New Paradigm for Wireless Network Analysis and Design
CIF:小:深度随机几何:无线网络分析和设计的新范式
  • 批准号:
    2007498
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Deep Sparse Models: Analysis and Algorithms
合作研究:CIF:小型:深度稀疏模型:分析和算法
  • 批准号:
    2008460
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CIF: Small: Deep Generative Models for Ultra High-Dimensional Communication
CIF:小型:超高维通信的深度生成模型
  • 批准号:
    2008710
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CIF: Small: Deep Learning for Information Theory- Tackling Algorithm Deficit
CIF:小型:信息论深度学习 - 解决算法缺陷
  • 批准号:
    1908003
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CIF: Small: Information Theory Meets Deep Learning: Universal Probability and Common Information for High-Dimensional Data
CIF:小:信息论遇见深度学习:高维数据的普遍概率和公共信息
  • 批准号:
    1911238
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CIF: Small: A Probabilistic Theory of Deep Learning via Spline Operators
CIF:小:通过样条算子进行深度学习的概率理论
  • 批准号:
    1911094
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了