QASciInf: Question Answering for Scientific Information
QASciInf:科学信息问答
基本信息
- 批准号:252295018
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The number of published scientific articles has grown exponentially in the last few decades. This makes it hardly possible for researchers to find and benefit from all relevant works. In this project, we address this problem and propose a set of novel research techniques to perform question answering (QA) over scientific information. The unique challenges of the scientific domain require novel approaches that are, to date, unexplored in QA research. In particular, a QA system for scientific information needs to (a) consider information from heterogeneous sources, (b) include better context-aware methods to process the long context that is represented by scientific articles, and (c) reason over the content of tables to generate answers based on the data. To enable research in this direction, we construct two novel datasets for (1) hybrid question answering over the text of scientific articles, table data, and discussions on the web, and (2) generating informative table descriptions through reasoning over the table content. In contrast to existing QA datasets, scientific QA is not limited to question-answer pairs that address the text of articles. Some questions can only be answered by reasoning over scientific tables and some can be answered by using related discussions on the web. Thus, based on these datasets, we propose approaches that can select relevant content from discussions on the web, while incorporating rich contextual information from the scientific article and the retrieved discussions. In addition, we research novel text generation models that are capable of reasoning over complex scientific tables. Because reasoning-aware table-to-text generation requires a considerable amount of training data, we propose novel methods to train generalizable table-to-text models by automatically expanding the training data with weakly supervised and semi-supervised training techniques. Finally, we consolidate our models in a prototype for hybrid QA over scientific literature which we evaluate in a user study.
在过去的几十年里,发表的科学文章数量呈指数级增长。这使得研究人员几乎不可能找到并受益于所有相关的工作。在这个项目中,我们解决了这个问题,并提出了一套新的研究技术,以执行问题回答(QA)的科学信息。科学领域的独特挑战需要新的方法,迄今为止,在QA研究中尚未探索。特别是,科学信息的质量保证系统需要(a)考虑来自不同来源的信息,(B)包括更好的上下文感知方法来处理科学文章所代表的长期上下文,以及(c)对表格的内容进行推理,以根据数据生成答案。为了实现这一方向的研究,我们构建了两个新的数据集,用于(1)对科学文章文本,表格数据和网络上的讨论进行混合问答,以及(2)通过对表格内容进行推理来生成信息丰富的表格描述。与现有的QA数据集相比,科学QA并不局限于解决文章文本的问答对。有些问题只能通过对科学表格的推理来回答,有些问题可以通过使用网络上的相关讨论来回答。因此,基于这些数据集,我们提出了可以从网络上的讨论中选择相关内容的方法,同时从科学文章和检索到的讨论中整合丰富的上下文信息。此外,我们还研究了能够在复杂的科学表格上进行推理的新型文本生成模型。由于推理感知表到文本生成需要大量的训练数据,我们提出了新的方法来训练可推广的表到文本模型,通过自动扩展训练数据与弱监督和半监督训练技术。最后,我们巩固我们的模型在一个原型混合QA的科学文献,我们在用户研究中进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Iryna Gurevych其他文献
Professorin Dr. Iryna Gurevych的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Iryna Gurevych', 18)}}的其他基金
Feature-based Visualization and Analysis of Natural Language Documents
基于特征的自然语言文档可视化和分析
- 批准号:
220835651 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Integrating Collaborative and Linguistic Resources for Word Sense Disambiguation and Semantic Role Labeling (InCoRe)
集成协作和语言资源以进行词义消歧和语义角色标记 (InCoRe)
- 批准号:
198622285 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Erschließung des lexikalisch-semantischen Wissens aus dynamischen und linguistischen Quellen und Integration ins Question Answering zum diskursiven Wissenserwerb im E-Learning
从动态和语言源中开发词汇语义知识,并将其集成到问答中,以获取电子学习中的话语知识
- 批准号:
37353858 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Semantisches Information Retrieval aus Texten am Fallbeispiel Elektronische Berufsberatung (SIR)
使用电子职业建议(SIR)案例研究从文本中检索语义信息
- 批准号:
5446581 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
UKP-SQuARE: A Software Platform for Question Answering Research
UKP-SQuARE:问答研究软件平台
- 批准号:
443179992 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
PEER: A computerized platform for authoring structured peer reviews
PEER:用于撰写结构化同行评审的计算机化平台
- 批准号:
440185223 - 财政年份:
- 资助金额:
-- - 项目类别:
Research data and software (Scientific Library Services and Information Systems)
相似海外基金
CAREER: Information Extraction and Integration with Applications to Healthcare Question Answering
职业:信息提取和与医疗保健问答应用程序的集成
- 批准号:
2145202 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Improving Question Answering Systems by Reasoning About Context
通过推理上下文来改进问答系统
- 批准号:
544188-2019 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Compositional Generalization in open-domain Visual Question Answering: A New Direction using Multimodal Grounded Representations using Graph Neural Networks
开放域视觉问答中的组合概括:使用图神经网络的多模态接地表示的新方向
- 批准号:
559027-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Scalable and Reliable Conversational Search and Question Answering
可扩展且可靠的对话式搜索和问答
- 批准号:
RGPIN-2022-03065 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Improving Question Answering Systems by Reasoning About Context
通过推理上下文来改进问答系统
- 批准号:
544188-2019 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Compositional Generalization in open-domain Visual Question Answering: A New Direction using Multimodal Grounded Representations using Graph Neural Networks
开放域视觉问答中的组合概括:使用图神经网络的多模态接地表示的新方向
- 批准号:
559027-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
An Enterprise Answering System for Collaborative Question Answering Platforms
协作问答平台的企业问答系统
- 批准号:
537219-2018 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants
Improving Question Answering Systems by Reasoning About Context
通过推理上下文来改进问答系统
- 批准号:
544188-2019 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
SBIR Phase I: Development of a fully annotated corpus for the training of a Clinical Question Answering System for critical results delivery at the Point of Care
SBIR 第一阶段:开发一个完整注释的语料库,用于培训临床问答系统,以便在护理点交付关键结果
- 批准号:
2014686 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
RI: Small: Visual Reasoning and Self-questioning for Explainable Visual Question Answering
RI:小:视觉推理和自我质疑以实现可解释的视觉问答
- 批准号:
2007613 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




