Critically Constrained Planning via Partial Delete Relaxation
通过部分删除松弛进行严格约束规划
基本信息
- 批准号:252282745
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Planning is one of the fundamental sub-areas of AI. Its technology allows to solve any problem that can be modeled in terms of finding paths in large transition systems, and can drastically simplify problem solving: instead of 1000s of lines of program code, one writes/maintains 10s of lines of model code. The industrial-scale use of this idea became realistic around the year 2000, thanks to dramatic scalability advances brought about by delete-relaxation heuristic functions. These derive an estimate of goal distance by solving a relaxed planning task in which the negative effects of actions are ignored. Variants of this technique are in wide-spread use today, both in competition-winning research prototypes and in applications.Despite this success, the delete-relaxation has serious shortcomings. Many applications of planning are constrained in the sense that we need to achieve the goal subject to limiting undesirable side effects, like fuel consumption. The delete relaxation is unable to account for that, as it pretends that nothing bad can ever happen. The consequences are dramatic in critically constrained problems around the solvability threshold, where all known methods fail and planners resort to exhaustive search. Our objective is to improve performance on such problems, especially on the unsolvable side for which there is scant prior research. To this end, we will employ techniques that allow to smoothly interpolate between fully-relaxed planning (no deletes at all) and unrelaxed planning (all deletes).Such partial delete relaxation has been a research aim since more than a decade, and was finally achieved in the two lines of work leading up to this project: Conjuncts compilation extends the input task with an explicit representation of a selected subset C of conjunctions. Red-black planning relaxes only a subset of the state variables. Prior to the project, both methods yielded dramatic improvements, but only in few domains; their behavior on critically constrained planning was promising but unsatisfactory. The project aims at realizing the techniques' full potential. During the first funding phase, we established a better understanding of conjuncts compilation; online C-learning methods highly successful on both sides of the solvability threshold; red-black planning methods for proving unsolvability; and a connection to dead-end detection in probabilistic planning. The proposed project renewal will: (i) Complete the investigation of basic methods through variable merging as well as a powerful new generalization of red-black planning, trace-memory variable relaxation. (ii) Develop sparse search methods using heavy approximations as templates instead of heuristic functions, and refuting plan existence by intelligently mixing heavy and light-weight approximations. (iii) Develop applications of our technology beyond classical planning, in over-subscription planning and goal probability analysis.
规划是AI的基本子领域之一。它的技术允许解决任何可以在大型转换系统中找到路径的问题,并且可以大大简化问题的解决:而不是1000行程序代码,编写/维护10行模型代码。这个想法的工业规模使用在2000年左右变得现实,这要归功于删除松弛启发式函数带来的显著的可扩展性进步。这些通过解决一个放松的计划任务,其中忽略了行动的负面影响,从而获得目标距离的估计。这种技术的变体今天被广泛使用,无论是在竞争中获胜的研究原型还是在应用中。计划的许多应用都受到限制,因为我们需要在限制不希望的副作用(如燃料消耗)的情况下实现目标。删除松弛无法解释这一点,因为它假装没有什么坏事会发生。在可解性阈值附近的严格约束问题中,所有已知的方法都失败了,规划者求助于穷举搜索,其后果是戏剧性的。我们的目标是提高这些问题的性能,特别是在无法解决的方面,这是缺乏事先的研究。为此,我们将采用的技术,允许之间的平滑插值完全放松的规划(没有删除)和非放松的规划(所有删除)。这种部分删除松弛一直是一个研究目标,因为超过十年,并最终实现了在两条线的工作导致这个项目:合取编译扩展输入任务的一个显式表示的一个选定的子集C的合取。红黑法规划只放松状态变量的一个子集。在该项目之前,这两种方法都取得了显着的改进,但仅在少数领域;它们在严格约束规划方面的表现是有希望的,但并不令人满意。该项目旨在实现技术的全部潜力。在第一个资助阶段,我们建立了对合取编译的更好理解;在线C学习方法在可解性阈值的两侧都非常成功;用于证明不可解性的红黑规划方法;以及与概率规划中的死胡同检测的联系。拟议的项目更新将:(i)通过变量合并以及强有力的红黑规划新概括、痕迹记忆变量松弛完成对基本方法的调查。(ii)开发稀疏搜索方法,使用重近似作为模板,而不是启发式函数,并通过智能地混合重近似和轻近似来反驳计划的存在。(iii)开发我们的技术在经典规划之外的应用,在超额订购规划和目标概率分析中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Jörg Hoffmann其他文献
Professor Dr. Jörg Hoffmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Jörg Hoffmann', 18)}}的其他基金
Star-Topology Decoupled State Space Search
星形拓扑解耦状态空间搜索
- 批准号:
289186625 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
- 批准号:
2337598 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Foundations of semi-infinite and equilibrium constrained optimization
职业:半无限和平衡约束优化的基础
- 批准号:
2340858 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Investigating Fluid Surface Dynamics in Constrained Geometries
职业:研究受限几何形状中的流体表面动力学
- 批准号:
2340259 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347991 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
GOALI: Fundamental Investigation of Constrained Cutting for High Performance Machining of Difficult-to-Cut Materials
GOALI:难切削材料高性能加工约束切削的基础研究
- 批准号:
2323120 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
NE/Y005260/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
- 批准号:
2345528 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Highly Tunable Dry Adhesion through Constrained Buckling
事业:通过约束屈曲实现高度可调的干附着力
- 批准号:
2239507 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Structure and dynamics of the subcontinental lithospheric mantle over the Central and Eastern North American continent, constrained by numerical modeling based on tomography models
基于层析成像模型的数值模拟约束北美大陆中部和东部次大陆岩石圈地幔的结构和动力学
- 批准号:
2240943 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




