AF: Small: Building a rich and rigorous theory of decision tree learning
AF:小:构建丰富而严谨的决策树学习理论
基本信息
- 批准号:2224246
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Decision trees are logical flowcharts that specify how responses to a sequence of questions can be amalgamated into a single global decision. Decision trees are one of the most natural ways of representing decision-making processes and they pervade everyday life. For example, a loan approval decision can reasonably be modeled as a decision tree that amalgamates various information about the applicant --- for example, "What is their annual income?"; "Have they defaulted on a loan in the past 5 years?"; etc. --- into a single global decision, whether the loan is approved or denied. Decision trees are also very basic objects of study throughout computer science and they play an increasingly important role in machine learning (ML). A central problem here, well studied since the 1970s, is that of decision tree learning: the algorithmic task of efficiently building a decision tree that represents a dataset. For example, given a dataset of applicants who had approved or denied loans, the task would be to build a decision tree that explains these decisions. In this project, the investigator will develop new algorithms for decision tree learning, as well as establish rigorous mathematical guarantees for existing decision tree learning algorithms that are widely used in practice. An important educational goal of this project is to train undergraduates and graduate students through the process of research collaboration and mentorship, with a particular goal of building expertise in decision tree learning and the theory of machine learning more generally. The investigator will also develop new curricular materials and maintain a tight feedback loop with experimental work and with ML practitioners. The popularity and effectiveness of decision trees in machine learning, and throughout computer science more generally, stem from their simplicity. They are extremely fast to evaluate, with evaluation time scaling with their depth, a quantity that is often exponentially smaller than their overall representation size. Alongside other classics such as linear regression, k-means, k-nearest neighbors, and support vector machines, heuristics for learning decision trees are an essential topic in any introductory ML course, and they are part of the standard toolkit of every ML practitioner. The logical and hierarchical structure of decision trees makes them easy to understand, and they are the most canonical example of an explainable model. A recent survey lists decision tree learning as the very first of "10 grand challenges" for the emerging field of explainable ML. Despite its empirical importance and success, many of the most basic theoretical questions regarding decision tree learning remain wide open. The investigator and his students have been working on addressing this for the past couple of years, and this project is structured around two overarching goals that have emerged from their research: (i) Develop new decision tree learning algorithms that advance our fundamental understanding of the problem. (ii) Establish performance guarantees for standard decision tree learning heuristics used in practice and place their empirical success on a firm theoretical footing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
决策树是逻辑流程图,它指定如何将对一系列问题的响应合并为单个全局决策。 决策树是表示决策过程的最自然的方式之一,它们渗透到日常生活中。 例如,贷款批准决策可以合理地建模为决策树,它合并了有关申请人的各种信息-例如,“他们的年收入是多少?“;“他们在过去5年里有没有拖欠贷款?“;等等-转化为一个单一的全局决策,无论贷款是被批准还是被拒绝。 决策树也是整个计算机科学中非常基本的研究对象,它们在机器学习(ML)中发挥着越来越重要的作用。 自20世纪70年代以来,决策树学习的一个核心问题得到了很好的研究:有效构建代表数据集的决策树的算法任务。 例如,给定批准或拒绝贷款的申请人的数据集,任务将是构建解释这些决策的决策树。 在这个项目中,研究人员将开发新的决策树学习算法,并为实践中广泛使用的现有决策树学习算法建立严格的数学保证。 该项目的一个重要教育目标是通过研究合作和指导过程培训本科生和研究生,特别是建立决策树学习和机器学习理论的专业知识。 研究人员还将开发新的课程材料,并与实验工作和ML从业者保持紧密的反馈循环。 决策树在机器学习中的流行和有效性,以及整个计算机科学中更普遍的,源于它们的简单性。 它们的评估速度非常快,评估时间随着深度而缩放,这个数量通常比它们的整体表示大小呈指数级小。 除了线性回归、k-means、k-nearest neighbors和支持向量机等经典算法外,学习决策树的算法是任何ML入门课程中的重要主题,也是每个ML从业者标准工具包的一部分。 决策树的逻辑和层次结构使它们易于理解,并且它们是可解释模型的最典型示例。 最近的一项调查将决策树学习列为新兴的可解释机器学习领域的“十大挑战”之首。 尽管决策树学习在经验上很重要且取得了成功,但许多关于决策树学习的最基本的理论问题仍然是开放的。 在过去的几年里,研究人员和他的学生一直致力于解决这个问题,这个项目围绕着他们的研究中出现的两个总体目标:(i)开发新的决策树学习算法,以推进我们对问题的基本理解。(ii)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li-Yang Tan其他文献
Li-Yang Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li-Yang Tan', 18)}}的其他基金
Collaborative Research: AF: Medium: Continuous Concrete Complexity
合作研究:AF:中:连续混凝土复杂性
- 批准号:
2211237 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Frontiers of Unconditional Derandomization
职业:无条件去随机化的前沿
- 批准号:
1942123 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative Research: Circuit Lower Bounds via Projections
AF:中:协作研究:通过投影确定电路下界
- 批准号:
1921795 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative Research: Circuit Lower Bounds via Projections
AF:中:协作研究:通过投影确定电路下界
- 批准号:
1563122 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Narratives of hope: small stories of desistance; building social capital amid on-going Covid 19 restrictions at HMP/YOI Winchester
希望的叙述:停止的小故事;
- 批准号:
2875591 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
SaTC: CORE: Small: Building Resilience into LEO Satellite Networks by Exploiting Network Layer Characteristics
SaTC:核心:小型:通过利用网络层特征构建 LEO 卫星网络的弹性
- 批准号:
2308761 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CyberTraining: Implementation: Small: Building Future Research Workforce in Trustworthy Artificial Intelligence (AI)
网络培训:实施:小型:建立可信赖人工智能 (AI) 领域的未来研究队伍
- 批准号:
2413654 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Small: Generic Building Blocks of Communication-efficient Computation Networks - Fundamental Limits
CIF:小型:通信高效计算网络的通用构建块 - 基本限制
- 批准号:
2221379 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track B: A Coordinated Food Hub Network and Farm to Institution Program: Building Bridges between Small Local Farmers and Institutions in New York State Capital Region
SCC-CIVIC-PG 轨道 B:协调的食品中心网络和农场到机构计划:在纽约州首府地区当地小农民和机构之间架起桥梁
- 批准号:
2228544 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Small and abundant molecules as building blocks for value added chemicals from fundamental principles to catalyst design
小而丰富的分子作为增值化学品的构建模块,从基本原理到催化剂设计
- 批准号:
2775351 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Studentship
CNS Core: Small: Building Resilience into Blockchains
CNS 核心:小型:构建区块链的弹性
- 批准号:
2210029 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Big data for small patients - Building "child-size" individual predictive models for life after childhood cancer
小型患者的大数据 - 为儿童癌症后的生活建立“儿童大小”的个体预测模型
- 批准号:
EP/T028017/1 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Fellowship
CyberTraining: Implementation: Small: Building Future Research Workforce in Trustworthy Artificial Intelligence (AI)
网络培训:实施:小型:建立可信赖人工智能 (AI) 领域的未来研究队伍
- 批准号:
2118083 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A new framework for building fail-slow fault-tolerant distributed systems
合作研究:CNS Core:Small:构建慢速容错分布式系统的新框架
- 批准号:
2130560 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant