Gated Synaptic Memory Devices with Adaptive Short-Term States for Neuromorphic Computing

用于神经形态计算的具有自适应短期状态的门控突触存储设备

基本信息

  • 批准号:
    1926465
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Artificial Intelligence (AI) techniques for big data analytics are becoming very important. However, AI software algorithms are computation resource intensive which imposes limitations on their practical applications as the currently available data processors are not well-suited for these needs. For example, training algorithms for AI can take several hours to days for completing the training process. Additionally, some of the other challenges, such as the requirement for huge training datasets, lack of real-time training and multi-modal data fusion capabilities, and limitations for the system to make decisions reliably with limited input data are well-recognized. Many of these problems can be addressed if brain-inspired neuromorphic data processors can be developed. However, it is a non-trivial task because of two primary reasons. First, the cortical circuits in brain is not fully understood and still is a topic of research in the neuroscience community. Second, artificial neuromimetic components for integration in brain-inspired architectures are not yet developed to match the computational efficiency and diversity of biological-brains. It has been identified from current understanding of cortical circuits in biological-brain that a synapse which is a reconfigurable connection between neurons, play pivotal a role in learning and memory formation. The focus of this project is to develop artificial nanoelectronic synaptic devices that can be integrated in neuromorphic architectures. The project provides significant opportunities for training graduate and undergraduate students in understanding and developing neuromorphic processors for AI. A new course on "Neuromorphic Computers for AI" at the graduate level will be developed. Efforts will be made to increase participation of underrepresented groups in STEM by leveraging the program on "Nurturing Educational Readiness and Development from the Start (NERDS)" and through local Association for Computing Machinery (ACM) chapter. The nanoelectronic synaptic device will be developed by exploiting time-dependent trap dynamics in oxides in conjunction with the transport of intrinsic or extrinsic dopants in a novel gated-Synaptic Memory Device (gated-SMD) configuration. These dynamics will result in an analog potentiation (increase in conductance) and depression (decrease in conductance) as a function of the temporal sequences of voltage-pulses on gate that can be explored for implementing bio-inspired learning algorithms. The objective of the proposed research will be achieved by executing the following specific aims: (1) fabricating gated-SMDs and studying the device characteristics, including potentiation and depression of resistive states on different time-scales as a function of gate-bias and modeling it; (2) understanding the scalability of these devices by large-scale layout designs and comparing and benchmarking the cell sizes against other candidate memory technologies; and (3) developing novel real-time learning algorithms and implementing bio-inspired learning schemes using gated-SMDs for neuromorphic architectures. The intellectual significance of the proposed research lies in knowledge base and a device platform to provide a solution of nanoelectronic synapses for neuromorphic circuits. If successful, the project will yield the following outcomes: (i) a fundamental understanding of gated-SMDs and device models benchmarked against experimental data, (ii) strategies to control potentiation and depression rates of resistive states in gated-SMD by engineering the device parameters, (iii) real-time learning algorithms tailored for gated-SMDs, and (iv) large-scale integration routes for gated-SMDs and scalability data. The achievement of these outcomes will have transformative impact on developing neuromorphic data processors for AI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用于大数据分析的人工智能(AI)技术变得非常重要。然而,人工智能软件算法是计算资源密集型的,这对其实际应用造成了限制,因为目前可用的数据处理器并不适合这些需求。例如,人工智能的训练算法可能需要几个小时到几天才能完成训练过程。此外,其他一些挑战,例如对庞大训练数据集的需求,缺乏实时训练和多模态数据融合功能,以及系统在有限输入数据下可靠决策的局限性,也是众所周知的。如果能够开发出受大脑启发的神经形态数据处理器,这些问题中的许多都可以得到解决。然而,由于两个主要原因,这是一项重要的任务。首先,大脑中的皮层回路尚未完全理解,仍然是神经科学界的研究课题。其次,用于整合大脑启发架构的人工神经模拟组件尚未开发出与生物大脑的计算效率和多样性相匹配的组件。 从目前对生物脑皮层回路的认识中可以看出,突触作为神经元之间的可重构连接,在学习记忆的形成中起着关键作用。这个项目的重点是开发可以集成在神经形态架构中的人工纳米电子突触器件。该项目为培训研究生和本科生理解和开发人工智能神经形态处理器提供了重要机会。将在研究生一级开设一门关于“人工智能神经形态计算机”的新课程。将通过利用“从一开始就培养教育准备和发展”方案和通过当地计算机协会分会,努力增加代表性不足的群体在STEM中的参与。 纳米电子突触器件将开发利用时间依赖的陷阱动力学的氧化物结合运输的内在或外在的掺杂剂在一个新的门控突触记忆器件(门控SMD)配置。这些动力学将导致模拟增强(电导增加)和抑制(电导减少)作为门上的电压脉冲的时间序列的函数,其可以被探索用于实现生物启发学习算法。本论文的主要研究内容包括:(1)制作栅控SMD器件,研究器件特性,包括电阻态在不同时间尺度上的增强和抑制随栅偏压的变化规律,并对其进行建模;(2)了解这些设备的可扩展性-缩放布局设计,并将单元尺寸与其他候选存储器技术进行比较和基准测试;以及(3)开发新颖的实时学习算法并使用用于神经形态架构的门控SMD实现生物启发学习方案。该研究的知识意义在于为神经形态电路提供知识库和器件平台,为神经形态电路提供纳米电子突触解决方案。如果成功,该项目将产生以下成果:(i)对门控SMD和以实验数据为基准的器件模型的基本理解,(ii)通过设计器件参数来控制门控SMD中电阻状态的增强和抑制率的策略,(iii)为门控SMD量身定制的实时学习算法,以及(iv)门控SMD的大规模集成路线和可扩展性数据。这些成果的实现将对人工智能神经形态数据处理器的开发产生变革性影响。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
VeriGene: A Tool for the Creation of DNA Representations for Hardware Security Analysis
Emerging Memory Devices Beyond Conventional Data Storage: Paving the Path for Energy-Efficient Brain-Inspired Computing
超越传统数据存储的新兴存储设备:为节能的类脑计算铺平道路
NeuroSOFM: A Neuromorphic Self-Organizing Feature Map Heterogeneously Integrating RRAM and FeFET
NeuroSOFM:异构集成 RRAM 和 FeFET 的神经形态自组织特征图
Memristive Device Variability Performance Impact on Neuromorphic Machine Learning Hardware
A Compact Gated-Synapse Model for Neuromorphic Circuits
神经形态电路的紧凑门控突触模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rashmi Jha其他文献

An Evaluation Index System based on Students' Behavior Characteristics based on Data Mining Technology
基于数据挖掘技术的学生行为特征评价指标体系
Ascorbate recycling by erythrocytes during aging in humans.
人类衰老过程中红细胞回收抗坏血酸。
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    S. Rizvi;K. Pandey;Rashmi Jha;P. Maurya
  • 通讯作者:
    P. Maurya
A Swift Classification of Attitude for Natural English Text Corpus
自然英语文本语料库态度的快速分类
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rashmi Jha;Mahima Tomar
  • 通讯作者:
    Mahima Tomar
Clinical and Microbiological Evaluation of Diode Laser and Systemic Doxycycline as an Additive to Scaling and Root Planing for Stage II and Stage III Periodontitis Patients
二极管激光和全身强力霉素作为 II 期和 III 期牙周炎患者洗牙和根面平整的添加剂的临床和微生物学评价
  • DOI:
    10.7759/cureus.56509
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tapaswi A Kamble;N. C. Deshpande;Monali Shah;Rashmi Jha;Aayushi Shah
  • 通讯作者:
    Aayushi Shah
Association Rules Mining for Business Intelligence
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Rashmi Jha
  • 通讯作者:
    Rashmi Jha

Rashmi Jha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rashmi Jha', 18)}}的其他基金

SemiSynBio-III: Novel Memory Devices for High-Density Data Storage and In-Memory Computing Based on Integrated Synthetic DNA-Semiconductors
SemiSynBio-III:基于集成合成 DNA 半导体的用于高密度数据存储和内存计算的新型存储设备
  • 批准号:
    2227484
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Workshop on Devices-to-Systems for In-Memory Computing, being held Virtual at the University of Cincinnati, Cincinnati, Ohio, May 11-12, 2021.
内存计算设备到系统研讨会,将于 2021 年 5 月 11 日至 12 日在俄亥俄州辛辛那提大学虚拟举行。
  • 批准号:
    2128685
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SHF:Small: Collaborative Research: Exploring 3-Dimensional Integration Strategies of STTRAM
SHF:Small:协作研究:探索 STTRAM 的 3 维集成策略
  • 批准号:
    1718428
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SaTC: Collaborative: Exploiting Spintronics for Security, Trust and Authentication
SaTC:协作:利用自旋电子学实现安全、信任和身份验证
  • 批准号:
    1556301
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER:Novel Nanoelectronic Reconfigurable Synaptic Memory Devices
职业:新型纳米电子可重构突触存储设备
  • 批准号:
    1556294
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SaTC: Collaborative: Exploiting Spintronics for Security, Trust and Authentication
SaTC:协作:利用自旋电子学实现安全、信任和身份验证
  • 批准号:
    1441733
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER:Novel Nanoelectronic Reconfigurable Synaptic Memory Devices
职业:新型纳米电子可重构突触存储设备
  • 批准号:
    1254271
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I-Corps: High Density Memristive Devices for Non-Volatile Memory Applications
I-Corps:用于非易失性存储器应用的高密度忆阻器件
  • 批准号:
    1242417
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
BRIGE: Transition Metal Oxide Based Multifunctional Nanoelectronic Memristor Devices
BRIGE:基于过渡金属氧化物的多功能纳米电子忆阻器器件
  • 批准号:
    1125743
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Regulation of social memory and synaptic plasticity by astrocytic neuroligin 3
星形细胞神经胶质素 3 对社会记忆和突触可塑性的调节
  • 批准号:
    478603
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Operating Grants
The cellular and synaptic mechanisms for the effects of psychedelics on flexible memory representations in the hippocampus
迷幻药对海马灵活记忆表征影响的细胞和突触机制
  • 批准号:
    2886127
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Towards a critical test of the synaptic plasticity and memory hypothesis
对突触可塑性和记忆假说进行关键测试
  • 批准号:
    10681918
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Activity-dependent Transcriptional Pathways Underlying Synaptic Mechanisms for Memory Discrimination and Generalization.
记忆辨别和泛化突触机制下的活动依赖性转录途径。
  • 批准号:
    10526971
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Spatiotemporal analysis of synaptic plasticity in memory consolidation
记忆巩固中突触可塑性的时空分析
  • 批准号:
    22H02720
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The effects of long-term locus coeruleus stimulation on amyloid/tau pathology, synaptic plasticity, and memory during Alzheimer's disease progression
长期蓝斑刺激对阿尔茨海默病进展过程中淀粉样蛋白/tau蛋白病理学、突触可塑性和记忆的影响
  • 批准号:
    10554301
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Role and regulatory mechanisms of pre- versus post-synaptic mRNA translation in remote memory recall at single neuron type resolution 'in vivo'
突触前与突触后 mRNA 翻译在单神经元类型分辨率“体内”远程记忆回忆中的作用和调节机制
  • 批准号:
    473841
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship Programs
Modulation of synaptic plasticity in pain and memory by amyloid beta
β淀粉样蛋白对疼痛和记忆突触可塑性的调节
  • 批准号:
    546860-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
The effects of long-term locus coeruleus stimulation on amyloid/tau pathology, synaptic plasticity, and memory during Alzheimer's disease progression
长期蓝斑刺激对阿尔茨海默病进展过程中淀粉样蛋白/tau蛋白病理学、突触可塑性和记忆的影响
  • 批准号:
    10346110
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Examining how memory suppressor genes affect synaptic vesicles
检查记忆抑制基因如何影响突触小泡
  • 批准号:
    563238-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了