Novel functional materials based on self-assembled protein nanofibers (PNNF): Degradation dynamics of PNNFs/hybrid PNNFs and creation of PNNF/hybrid PNNF micro-scaffolds (step 2)
基于自组装蛋白质纳米纤维 (PNNF) 的新型功能材料:PNNF/混合 PNNF 的降解动力学以及 PNNF/混合 PNNF 微支架的创建(步骤 2)
基本信息
- 批准号:252901784
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Due to their outstanding biocompatibility and mechanical strength, protein nanofibers (PNNFs) have a high potential for applications in materials science and biomedical engineering. In this stepwise project (3 project steps with 2 years duration each), we aim towards understanding PNNF formation mechanisms and to apply this knowledge by creating novel PNNF based micro-scaffolds (MS) as building blocks for larger structures in tissue regeneration or drug delivery.In the successfully completed first project step, we i) created novel hybrid PNNFs (hPNNFs) consisting of two different plasma proteins, ii) developed a model for PNNF self-assembly that explains the observed experimental results and allows predictions for new PNNFs, iii) created single PNNFs that are stable in solution for at least 4 weeks, and iv) achieved the desired PNNF mechanical stiffness, leading to publications in high impact factor journals. The results of the first project step lay a promising foundation for the second project step.This second step focuses on the advancement of knowledge of PNNF and MS degradation. It contributes to the future goal of designing the biomaterials’ stability to required regeneration kinetics of tissues. We will test two hypotheses: first, that MSs can be fabricated from PNNFs and novel hybrid PNNFs by layer-by-layer (LBL) with micro-contact printing (μCP) approaches, and second, that based on the understanding of the PNNF degradation, MSs with desired target degradation can be created.Our research aims of project step 2 are, therefore, to i) understand the currently unknown degradation mechanisms of the MSs building blocks (PNNFs/hPNNFs), ii) to apply new strategies to fabricate novel MSs based on the self-assembled PNNFs/hPNNFs.To this end, we will initially investigate the PNNF’s and hPNNF’s degradation dynamics using wet state AFM and QCM considering bone regeneration conditions. The results from these experiments will enable us to understand the PNNF degradation mechanism and the impact of the second protein in hPNNFs and of the PNNF/hPNNF dimensions, which are important for tailoring the degradation of the PNNF/hPNNF based MSs. Next, we will create PNNF/hPNNF based single and bilayers, as important intermediate step to fabricate 3D MSs, using LBL dip coating.Finally, we will create 3D-MSs by combining LBL and μCP approaches with the aim to understand and adjust the MS’ degradation properties through the choice of PNNF/hPNNF dimensions as well as the choice of the MS structure.In the third project step (last 2 years), we will tailor the degradation, mechanical properties and, thus, the cellular response to the MSs.We expect that the projected results will significantly advance the knowledge and understanding of PNNFs and have a considerable impact on the application of MSs as biomaterials for tissue regeneration through the flexibility of the PNNF’s and MS’ properties.
由于其出色的生物相容性和机械强度,蛋白质纳米纤维(PNNF)在材料科学和生物医学工程中具有很高的应用潜力。在这个分步项目中(3个项目步骤,每个步骤持续2年),我们的目标是了解PNNF形成机制,并通过创建基于PNNF的新型微支架(MS)作为组织再生或药物输送中更大结构的构建块来应用这些知识。在成功完成的第一个项目步骤中,我们i)创建了由两种不同血浆蛋白组成的新型混合PNNF(hPNNF),ii)开发了一种 PNNF 自组装模型解释了观察到的实验结果并允许预测新的 PNNF,iii) 创建了在溶液中稳定至少 4 周的单个 PNNF,以及 iv) 实现了所需的 PNNF 机械刚度,从而在高影响因子期刊上发表了论文。第一个项目步骤的结果为第二个项目步骤奠定了良好的基础。第二个步骤的重点是 PNNF 和 MS 降解知识的进步。它有助于设计生物材料对组织再生动力学所需的稳定性的未来目标。我们将测试两个假设:首先,MS 可以通过微接触印刷 (μCP) 方法通过逐层 (LBL) 方法由 PNNF 和新型混合 PNNF 制造,其次,基于对 PNNF 降解的理解,可以创建具有所需目标降解的 MS。因此,我们项目步骤 2 的研究目标是 i) 了解当前未知的 MSs构件(PNNFs/hPNNFs)的降解机制,ii)应用新策略来制造基于自组装PNNFs/hPNNFs的新型MSs。为此,我们将首先考虑骨再生条件,使用湿态AFM和QCM研究PNNFs和hPNNFs的降解动力学。这些实验的结果将使我们能够了解 PNNF 降解机制以及 hPNNF 中第二种蛋白质和 PNNF/hPNNF 维度的影响,这对于定制基于 PNNF/hPNNF 的 MS 的降解非常重要。接下来,我们将使用 LBL 浸涂创建基于 PNNF/hPNNF 的单层和双层,作为制造 3D MS 的重要中间步骤。最后,我们将结合 LBL 和 μCP 方法创建 3D-MS,目的是通过选择 PNNF/hPNNF 尺寸以及 MS 结构来了解和调整 MS 的降解特性。在第三个项目步骤中 (过去 2 年),我们将调整降解、机械性能以及细胞对 MS 的反应。我们预计,预计的结果将显着增进对 PNNF 的认识和理解,并通过 PNNF 和 MS 特性的灵活性,对 MS 作为组织再生生物材料的应用产生相当大的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Klaus D. Jandt其他文献
Professor Dr. Klaus D. Jandt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
- 批准号:82371801
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
利用CRISPR内源性激活Atoh1转录促进前庭毛细胞再生和功能重建
- 批准号:82371145
- 批准年份:2023
- 资助金额:46.00 万元
- 项目类别:面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
- 批准号:82371373
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
SMC5-NSMCE2功能异常激活APSCs中p53/p16衰老通路导致脂肪萎缩和胰岛素抵抗的机制研究
- 批准号:82371873
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
HK2乳酰化修饰介导巨噬细胞功能障碍在脓毒症中的作用及机制
- 批准号:82372160
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
- 批准号:82372328
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
LTB4/BLT1轴调控NLRP3炎症小体对糖尿病认知功能障碍的作用研究
- 批准号:82371213
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
浸润特性调制的统计热力学研究
- 批准号:21173271
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Elucidation of Mechanism of Phonon Thermal Conductivity Reduction by Orbital Fluctuation for Development of Novel Thermal Functional Materials
阐明轨道涨落降低声子导热率的机制,以开发新型热功能材料
- 批准号:
23KJ0893 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of novel functional materials utilizing organoarsenic chemistry
利用有机砷化学开发新型功能材料
- 批准号:
22KJ2040 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Functional Extension of Nitride Semiconductors by Epitaxial Integration of Novel Materials
通过新型材料的外延集成扩展氮化物半导体的功能
- 批准号:
23KK0094 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development and application of novel highly-functional packing materials for liquid chromatography using sigma-hole interactions
利用西格玛孔相互作用的新型高效液相色谱填料的开发与应用
- 批准号:
23K06090 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of Novel Superconductors and Functional Materials by Non-Equilibrium Carrier Doping Method
非平衡载流子掺杂法制备新型超导体和功能材料
- 批准号:
23H01933 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enabling and advancing novel functional materials under extreme conditions for energy applications
在能源应用的极端条件下启用和推进新型功能材料
- 批准号:
RGPIN-2020-06422 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development of Novel Cartilage Regeneration Materials with Functional Glycolipid Molecules
功能性糖脂分子新型软骨再生材料的开发
- 批准号:
22H03917 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studying novel materials using synchrotron-based spectroscopy and density functional calculations
使用基于同步加速器的光谱和密度泛函计算研究新型材料
- 批准号:
RGPIN-2020-04337 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nitrogen under Extreme Conditions: From Fundamental Physics to Novel Functional Materials
极端条件下的氮:从基础物理到新型功能材料
- 批准号:
MR/V025724/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship














{{item.name}}会员




