PFI-TT: Physics-based Deep Transfer Learning for Predictive Maintenance of Industrial and Agricultural Machinery

PFI-TT:基于物理的深度迁移学习,用于工业和农业机械的预测性维护

基本信息

  • 批准号:
    1919265
  • 负责人:
  • 金额:
    $ 23.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this Partnerships for Innovation - Technology Translation (PFI-TT) project is to provide the industrial and agricultural sectors with a practical and scalable solution for proactively predicting and preventing the failures of rotating machinery. An unexpected failure of a rotating machine may incur high maintenance and downtime costs, reduce customer satisfaction in a produced good, and cause human injuries and fatalities. These consequences not only impact the end user of the rotating machine, but also the machinery manufacturer by tarnishing its reputation and potentially impacting its competitive advantage. This PFI-TT project will accelerate the commercialization of deep learning in predictive maintenance to provide more accurate failure predictions than current solutions and is easily deployed across different types of machines and equipment. By making predictive maintenance practical and scalable, this project is expected to produce major advancements in developing machine systems that are more reliable and safer, as well as incurring lower maintenance and downtime costs than existing systems. Ultimately, the economic competitiveness of the U.S. industrial and agricultural sectors will be enhanced based on more reliable, safer and lower-cost rotating machinery.The proposed project will create a cost-effective, easy-to-implement, easy-to-scale Industrial Internet of Things (IIoT) platform for remotely monitoring machine health and predicting when and where maintenance actions need to be taken. The core of the proposed IIoT platform is a new deep learning solution that exploits the concepts of physics-based learning, transfer learning and online learning. To date, deep learning approaches to diagnostics/prognostics have been mostly relying on large volumes of training data and largely in isolation from the underlying physics of component faults. This project will overcome these limitations by integrating physics-based modeling and data-driven transfer learning. The resulting solution does not simply use run-to-failure data to train a deep learning model. Instead, training data is used, in conjunction with known physics and previously learned knowledge, to achieve more accurate predictions than possible from using training data alone. Additionally, the solution offers the capability of online learning that may lead to a paradigm shift in machinery prognostics toward unit-specific learning and prediction. The proposed deep learning solution has the potential to make predictive maintenance practical and scalable, thereby significantly promoting the wide-scale adoption of this maintenance strategy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个创新技术转化伙伴关系(PFI-TT)项目的更广泛的影响/商业潜力是为工业和农业部门提供一个实用的和可扩展的解决方案,以主动预测和预防旋转机械的故障。旋转机器的意外故障可能导致高昂的维护和停机成本,降低生产产品的客户满意度,并导致人员伤亡。这些后果不仅影响旋转机器的最终用户,而且通过玷污其声誉和潜在影响其竞争优势的机械制造商。这个PFI-TT项目将加速深度学习在预测性维护中的商业化,提供比当前解决方案更准确的故障预测,并且很容易部署在不同类型的机器和设备上。通过实现预测性维护的实用性和可扩展性,该项目有望在开发更可靠、更安全的机器系统方面取得重大进展,并且比现有系统产生更低的维护和停机成本。最终,基于更可靠、更安全、成本更低的旋转机械,美国工农业部门的经济竞争力将得到增强。拟议的项目将创建一个成本效益高、易于实施、易于扩展的工业物联网(IIoT)平台,用于远程监控机器健康状况,并预测何时何地需要采取维护行动。提出的IIoT平台的核心是一个新的深度学习解决方案,它利用了基于物理的学习、迁移学习和在线学习的概念。迄今为止,用于诊断/预测的深度学习方法主要依赖于大量的训练数据,并且在很大程度上与组件故障的底层物理隔离。该项目将通过整合基于物理的建模和数据驱动的迁移学习来克服这些限制。由此产生的解决方案并不是简单地使用运行到故障的数据来训练深度学习模型。相反,将训练数据与已知的物理和以前学过的知识结合使用,以获得比单独使用训练数据更准确的预测。此外,该解决方案提供了在线学习的能力,这可能导致机器预测向特定单元学习和预测的范式转变。提出的深度学习解决方案有可能使预测性维护变得实用和可扩展,从而显著促进这种维护策略的广泛采用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A physics-informed deep learning approach for bearing fault detection
IIoT Deployment of a Physics-Informed Deep Learning Model for Online Bearing Fault Diagnostics
IIoT 部署基于物理的深度学习模型,用于在线轴承故障诊断
Ensembles of probabilistic LSTM predictors and correctors for bearing prognostics using industrial standards
  • DOI:
    10.1016/j.neucom.2021.12.035
  • 发表时间:
    2022-04-28
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Nemani, Venkat P.;Lu, Hao;Zimmerman, Andrew T.
  • 通讯作者:
    Zimmerman, Andrew T.
A physics-informed feature weighting method for bearing fault diagnostics
  • DOI:
    10.1016/j.ymssp.2023.110171
  • 发表时间:
    2023-02-07
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Lu, Hao;Nemani, Venkat Pavan;Zimmerman, Andrew T.
  • 通讯作者:
    Zimmerman, Andrew T.
Joint training of a predictor network and a generative adversarial network for time series forecasting: A case study of bearing prognostics
  • DOI:
    10.1016/j.eswa.2022.117415
  • 发表时间:
    2022-05-17
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Lu, Hao;Barzegar, Vahid;Zimmerman, Andrew Todd
  • 通讯作者:
    Zimmerman, Andrew Todd
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Laflamme其他文献

Enhancing 3D-printed cementitious composites with recycled carbon fibers from wind turbine blades
用来自风力涡轮机叶片的回收碳纤维增强 3D 打印胶凝复合材料
  • DOI:
    10.1016/j.conbuildmat.2025.140650
  • 发表时间:
    2025-04-18
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Han Liu;Simon Laflamme;Amelia Cardinali;Ping Lyu;Iris V. Rivero;Shelby E. Doyle;Kejin Wang
  • 通讯作者:
    Kejin Wang
Populism and Non-Populism: A Comparative Study of Political Platforms
民粹主义与非民粹主义:政治纲领的比较研究
Design and Standardization of a Speech and Language Screening Tool for Use among School-Aged Bilingual Children in a Minority Language Setting
供少数民族语言环境中学龄双语儿童使用的言语和语言筛查工具的设计和标准化
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michèle Minor;Chantal Mayer;Roxanne Bélanger;M. Robillard;Simon Laflamme;A. Reguigui
  • 通讯作者:
    A. Reguigui
Perspective on structural health monitoring of bridge scour
桥梁冲刷结构健康监测展望
Development and validation of a nonlinear dynamic model for tuned liquid multiple columns dampers
  • DOI:
    10.1016/j.jsv.2020.115624
  • 发表时间:
    2020-11-24
  • 期刊:
  • 影响因子:
  • 作者:
    Liang Cao;Yongqiang Gong;Filippo Ubertini;Hao Wu;An Chen;Simon Laflamme
  • 通讯作者:
    Simon Laflamme

Simon Laflamme的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Laflamme', 18)}}的其他基金

Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
  • 批准号:
    2234919
  • 财政年份:
    2023
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Standard Grant
RTML: Small: Collaborative: A Programming Model and Platform Architecture for Real-time Machine Learning for Sub-second Systems
RTML:小型:协作:亚秒级系统实时机器学习的编程模型和平台架构
  • 批准号:
    1937460
  • 财政年份:
    2019
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Multifunctional Structural Panel for Energy Efficiency and Multi-Hazards Mitigation
合作研究:用于提高能源效率和减轻多种危害的多功能结构面板
  • 批准号:
    1562992
  • 财政年份:
    2016
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Standard Grant
Development of High Performance Control Systems for Wind Response Mitigation
开发用于减轻风响应的高性能控制系统
  • 批准号:
    1537626
  • 财政年份:
    2015
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Semi-Active Controlled Cladding Panels for Multi-Hazard Resilient Buildings
合作研究:用于多灾害防御建筑的半主动控制覆层板
  • 批准号:
    1463252
  • 财政年份:
    2015
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Standard Grant
Developing the Next Generation of Cost-Effective High Performance Damping Systems for Seismic and Wind Hazards Mitigation
开发下一代经济高效的高性能阻尼系统以减轻地震和风灾
  • 批准号:
    1300960
  • 财政年份:
    2013
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Standard Grant

相似国自然基金

叶绿体蛋白 TT3.2 调控水稻耐热性的分子机制研究
  • 批准号:
    24ZR1431200
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
苯并呋喃-6-酮类化合物TT01f通过调控Jagged1/Notch信号通路改善特发性肺纤维化的药理学机制研究
  • 批准号:
    82304596
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TT3.2通过自噬体-液泡途径调控水稻盐胁迫抗性的分子机制研究
  • 批准号:
    32301745
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
  • 批准号:
    32372384
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
TT02通过巨噬细胞外囊泡miR-122/Wnt途径拮抗石英诱导肺纤维化的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
核用690TT合金传热管表面划伤诱导应力腐蚀裂纹萌生机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
HIIT 对TT+DR 小鼠肩袖肌脂肪浸润的治疗效果和机制研究
  • 批准号:
    2021JJ40949
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
GhmiR858靶向TT2协同调控彩色棉纤维色泽形成的分子机制研究
  • 批准号:
    32001591
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
  • 批准号:
    2345803
  • 财政年份:
    2024
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Continuing Grant
PFI-TT: Commercial scale production of aligned polymer nanofiber materials and yarns
PFI-TT:定向聚合物纳米纤维材料和纱线的商业规模生产
  • 批准号:
    2345785
  • 财政年份:
    2024
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Standard Grant
PFI-TT: Vine Robots for In-Pipe Navigation and Inspection of Critical Infrastructure
PFI-TT:用于管道内导航和关键基础设施检查的 Vine 机器人
  • 批准号:
    2345769
  • 财政年份:
    2024
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Standard Grant
PFI-TT: A Smart Bipolar Surgical Device for Electrosurgery
PFI-TT:用于电外科的智能双极手术设备
  • 批准号:
    2329783
  • 财政年份:
    2024
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Continuing Grant
PFI-TT: Bio-inspired enhancement of concrete for carbon sequestration and longevity
PFI-TT:仿生增强混凝土以实现碳封存和长寿
  • 批准号:
    2329856
  • 财政年份:
    2024
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Continuing Grant
PFI-TT: Local Sensing on Automated Vehicles
PFI-TT:自动驾驶车辆的本地传感
  • 批准号:
    2329820
  • 财政年份:
    2024
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Continuing Grant
PFI-TT: Smart windows for on-demand control of solar heat and daylight
PFI-TT:用于按需控制太阳热能和日光的智能窗户
  • 批准号:
    2345804
  • 财政年份:
    2024
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Standard Grant
PFI-TT: Prototyping a Electromechanical Sensor to Reduce Cheese Trim Losses
PFI-TT:制作机电传感器原型以减少奶酪边角损失
  • 批准号:
    2345656
  • 财政年份:
    2024
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Continuing Grant
PFI-TT: Chemical Synthesis of a Natural Product Family of Compounds for Tick-Targeted Prevention and Control
PFI-TT:用于蜱目标预防和控制的天然产物化合物家族的化学合成
  • 批准号:
    2345757
  • 财政年份:
    2024
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Standard Grant
PFI-TT: Water disinfection using safe and sustainable copper combined with a locally enhanced electric field
PFI-TT:使用安全且可持续的铜结合局部增强电场进行水消毒
  • 批准号:
    2329669
  • 财政年份:
    2024
  • 资助金额:
    $ 23.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了