Functional Nanoparticles for Lighting Materials and Antibacterial Coatings

用于照明材料和抗菌涂料的功能纳米颗粒

基本信息

项目摘要

In this project we aim for three main objectives: firstly Eu2+ containing nanoparticles which are very important for lighting functional materials can be produced with ionic liquids as starting materials with a much better quality and a smaller size as our preliminary works show. Compared to the melting method which is currently used for the production of these materials our new method save a lot of raw materials, energy and time. Furthermore, new nanosized luminescence materials can be prepared by this method which is not known yet. Another approach is the development of functional materials for antibacterial coatings. A third goal of this project is the investigation of extremely small Eu2+ doped particles which are suitable to answer the question if the luminescence properties of these ions can be changed with the particle size. This would in fact lead to a new strategy for the development of functional materials for many purposes. Ideal candidates for these studies are fluorides, oxides and sulfides, undoped or doped with divalent lanthanide (Ln2+) ions, due to their expanded bandgap, antiseptic or semiconductor character. Nevertheless, the currently available synthesis methods are not appropriated for the preparation of these lattices in a small nanoscale. Especially for Ln2+-doped crystals, the oxidative nature of water and other conventional solvents consist a major obstacle. The ultimate solution of this impasse is offered by ionic liquid (IL)-assisted synthesis methods. Because of the high polar and coordinative environment, ILs are able to easily solve reactants and stabilize the particle surface, avoiding undesired crystal growth. In contrast with water, ILs are able to stabilize lanthanide ions in the divalent state, enabling the direct precipitation of Ln2+ particles and avoiding post-synthetic reducing annealing steps at T > 1000°C and artificial atmosphere.
在本项目中,我们的目标主要有三个:第一,我们的初步工作表明,以离子液体为原料,可以制备出质量更好、尺寸更小的Eu2+纳米颗粒。与目前用于生产这些材料的熔融法相比,我们的新方法节省了大量的原材料、能源和时间。此外,还可以用这种方法制备新的纳米发光材料,这还不为人所知。另一种方法是开发抗菌涂料的功能材料。本项目的第三个目标是研究非常小的Eu2+掺杂粒子,这些粒子适合回答这些离子的发光性质是否可以随着粒子大小的变化而变化的问题。事实上,这将导致一种新的战略,用于开发多种用途的功能材料。这些研究的理想候选者是氟化物、氧化物和硫化物,由于它们具有扩展的带隙、防腐剂或半导体特性,未掺杂或掺杂二价稀土(LN+)离子。然而,目前可用的合成方法并不适合于在小纳米尺度上制备这些晶格。尤其是对于掺LN~(2+)的晶体来说,水和其他传统溶剂的氧化性质是一个主要的障碍。这一僵局的最终解决方案是离子液体(IL)辅助合成方法。由于离子液体的高极性和配位环境,离子液体能够很容易地溶解反应物,稳定粒子表面,避免不必要的晶体生长。与水相比,离子液体能够稳定二价态的稀土离子,使LN2+粒子能够直接析出,并避免了在T&gT;1000°C和人工气氛下的后合成还原热处理步骤。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Claudia Wickleder其他文献

Professorin Dr. Claudia Wickleder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Claudia Wickleder', 18)}}的其他基金

Lumineszenzeigenschaften von undotierten und Selten-Erd-dotierten Oxiden und deren Änderung durch Substitution
未掺杂和稀土​​掺杂氧化物的发光特性及其通过取代的变化
  • 批准号:
    5434757
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Optische Spektroskopie an zweiwertigen Lanthaniden in neuen Wirtsverbindungen
新主体化合物中二价镧系元素的光谱
  • 批准号:
    5426403
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

EXSOLUTION-BASED NANOPARTICLES FOR LOWEST COST GREEN HYDROGEN VIA ELECTROLYSIS
基于萃取的纳米颗粒通过电解生产成本最低的绿氢
  • 批准号:
    10102891
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Orientated biointerfacing of cell-mimetic nanoparticles
细胞模拟纳米粒子的定向生物界面
  • 批准号:
    DP240100770
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
  • 批准号:
    EP/X031403/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Hydrogen-Bonded Organic Frameworks Nanoparticles for Ultrasound-Activated, Genetically-Targeted Neuromodulation
职业:用于超声激活、基因靶向神经调节的氢键有机框架纳米颗粒
  • 批准号:
    2340964
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Tools to Control and Monitor Van der Waals Forces between Nanoparticles: Quantitative Insights on Biological, Environmental, and Fungal Cell Interactions.
控制和监测纳米颗粒之间范德华力的工具:对生物、环境和真菌细胞相互作用的定量见解。
  • 批准号:
    2335597
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Unravelling Efficient Nucleic Acid Delivery Using Multilayer Nanoparticles
使用多层纳米粒子揭示有效的核酸输送
  • 批准号:
    DP240102642
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
  • 批准号:
    DP240102315
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Microfluidics to explore the uptake of nanoparticles by endothelial cells
微流体技术探索内皮细胞对纳米粒子的摄取
  • 批准号:
    DP240101579
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
  • 批准号:
    EP/Y029542/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
EAGER: Low-Temperature Plasmas for Synthesis of Diamond Nanoparticles
EAGER:用于合成金刚石纳米粒子的低温等离子体
  • 批准号:
    2333452
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了