Regularity and Singularity Formation in Swarming and Related Fluid Models

集群及相关流体模型中的规律性和奇异性形成

基本信息

  • 批准号:
    1815667
  • 负责人:
  • 金额:
    $ 11.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

Swarming is a commonly observed complex biological and sociological phenomenon. The internal interaction mechanism attracts a lot of attention in physics, engineering, biology, and social sciences. This project is devoted to developing a unified mathematical theory towards the understanding of the swarming dynamics, as well as other nonlocal models that share similar structures. These models are widely considered in fluid mechanics, meteorology, astrophysics, biology, and ecology. The study of the regularity and singularity formations of these equations will provide a firm theoretical foundation for these applications, and also help consolidate the validity of these models in describing the natural phenomena. The research will focus on understanding the nonlinear and nonlocal phenomena in swarming dynamics, and models having related structures in fluid mechanics. Three different but related models will be investigated. The first model is the Euler-Alignment system, which describes the flocking behavior in animal swarms. The goal is to develop a robust toolbox to analyze the nonlocal alignment operator and its balance with the drift nonlinearity. Similar behaviors are also observed in other fluid equations including porous medium flow, and surface quasi-geostrophic equations, which will be investigated using the same analytical techniques. The second model is the 2D inviscid Boussinesq equations. The global regularity is one of the outstanding problems in fluid dynamics. The idea is to construct solutions to capture the possible singularity formation, starting from some modified versions of the equations. The third model is the kinetic swarming system. The aim is to investigate the important relation between the kinetic equation and a variety of hydrodynamic limits. In particular, different alignment operators will be considered at the kinetic level. They are expected to lead to different macroscopic limits. All these three sub-projects will advance the mathematical understanding of nonlocal PDEs and related applications. They will also provide education and training to graduate and undergraduate students in this active field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
群集是一种常见的复杂的生物学和社会学现象。其内部相互作用机制在物理学、工程学、生物学和社会科学中引起了广泛的关注。该项目致力于发展一个统一的数学理论,以理解群集动力学,以及其他具有相似结构的非局部模型。这些模型在流体力学、气象学、天体物理学、生物学和生态学中被广泛考虑。研究这些方程的正则性和奇性形成,将为这些应用提供坚实的理论基础,也有助于巩固这些模型描述自然现象的有效性。研究将集中在理解群集动力学中的非线性和非局部现象,以及具有流体力学相关结构的模型。将研究三种不同但相关的模型。第一个模型是欧拉-对齐系统,它描述了动物群体中的群集行为。我们的目标是开发一个强大的工具箱来分析非局部对准算子及其与漂移非线性的平衡。类似的行为也观察到在其他流体方程,包括多孔介质流,和表面准地转方程,这将使用相同的分析技术进行研究。第二个模型是二维无粘Boussinesq方程。整体正则性问题是流体力学中的一个突出问题。我们的想法是构造解决方案,以捕捉可能的奇点形成,从一些修改后的版本的方程。第三个模型是动力学群集系统。其目的是调查的动力学方程和各种水动力极限之间的重要关系。特别地,将在动力学水平上考虑不同的对准算子。预计它们将导致不同的宏观极限。所有这三个子项目将推进非局部偏微分方程的数学理解和相关的应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Changhui Tan其他文献

First-order aggregation models with alignment
具有对齐功能的一阶聚合模型
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Fetecau;Weiran Sun;Changhui Tan
  • 通讯作者:
    Changhui Tan
Hierarchical Construction of Bounded Solutions of div U=F in Critical Regularity Spaces
临界正则空间中div U=F有界解的层次构造
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Tadmor;Changhui Tan
  • 通讯作者:
    Changhui Tan
On the global classical solution to compressible Euler system with singular velocity alignment
奇异速度对准的可压缩欧拉系统的全局经典解
  • DOI:
    10.4310/maa.2021.v28.n2.a3
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Li Chen;Changhui Tan;Lining Tong
  • 通讯作者:
    Lining Tong
Singularity formation for a fluid mechanics model with nonlocal velocity
An Exact Rescaling Velocity Method for some Kinetic Flocking Models
一些动力学植绒模型的精确重缩放速度方法
  • DOI:
    10.1137/140993430
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Rey;Changhui Tan
  • 通讯作者:
    Changhui Tan

Changhui Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Changhui Tan', 18)}}的其他基金

CAREER: Nonlocal partial differential equations in collective dynamics and fluid flow
职业:集体动力学和流体流动中的非局部偏微分方程
  • 批准号:
    2238219
  • 财政年份:
    2023
  • 资助金额:
    $ 11.82万
  • 项目类别:
    Continuing Grant
Nonlocal Transport Equations in Fluids, Swarming, and Traffic Flows
流体、蜂群和交通流中的非局域传输方程
  • 批准号:
    2108264
  • 财政年份:
    2021
  • 资助金额:
    $ 11.82万
  • 项目类别:
    Continuing Grant
Regularity and Singularity Formation in Swarming and Related Fluid Models
集群及相关流体模型中的规律性和奇异性形成
  • 批准号:
    1853001
  • 财政年份:
    2018
  • 资助金额:
    $ 11.82万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Analysis of uncertainty, long-time statistics and singularity formation in fluid flow models
职业:流体流动模型中的不确定性、长期统计数据和奇点形成分析
  • 批准号:
    2239325
  • 财政年份:
    2023
  • 资助金额:
    $ 11.82万
  • 项目类别:
    Continuing Grant
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
  • 批准号:
    2306726
  • 财政年份:
    2023
  • 资助金额:
    $ 11.82万
  • 项目类别:
    Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
  • 批准号:
    2307638
  • 财政年份:
    2023
  • 资助金额:
    $ 11.82万
  • 项目类别:
    Standard Grant
Singularity formation in Kahler geometry
卡勒几何中奇点的形成
  • 批准号:
    2304692
  • 财政年份:
    2023
  • 资助金额:
    $ 11.82万
  • 项目类别:
    Standard Grant
Regularity Versus Singularity Formation in Nonlinear Partial Differential Equations
非线性偏微分方程中的正则性与奇异性形成
  • 批准号:
    2154219
  • 财政年份:
    2022
  • 资助金额:
    $ 11.82万
  • 项目类别:
    Standard Grant
Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
  • 批准号:
    2205590
  • 财政年份:
    2022
  • 资助金额:
    $ 11.82万
  • 项目类别:
    Continuing Grant
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2022
  • 资助金额:
    $ 11.82万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity formation in general relativity, and geometric inverse problems.
广义相对论中奇点的形成和几何逆问题。
  • 批准号:
    RGPIN-2020-05108
  • 财政年份:
    2022
  • 资助金额:
    $ 11.82万
  • 项目类别:
    Discovery Grants Program - Individual
Workshop on Trends in Soliton Dynamics and Singularity Formation for Nonlinear Dispersive PDEs
非线性色散偏微分方程孤子动力学和奇点形成趋势研讨会
  • 批准号:
    2230164
  • 财政年份:
    2022
  • 资助金额:
    $ 11.82万
  • 项目类别:
    Standard Grant
Singularity Formation and Propagation in Incompressible Fluids
不可压缩流体中奇点的形成和传播
  • 批准号:
    2124748
  • 财政年份:
    2021
  • 资助金额:
    $ 11.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了