Hybrid discretizations in solid mechanics for non-linear and non-smooth problems

固体力学中非线性和非光滑问题的混合离散化

基本信息

项目摘要

Modern finite element methods currently play an important role in the construction, design and development of new materials, innovative products and production processes. Despite successful research in the past, there are still many open problems, e.g., artificial stiffening effects, numerical instabilities and undesired mesh distortion sensitivity. Within this project, a special focus is on geometrical and material non-linearities, nearly incompressible, anisotropic and generalized materials as well as contact and interface models, since these fields are of great theoretical and practical relevance. Discontinuous Galerkin (DG) methods may be seen as generalizations of continuous methods, thus offering additional features and options for the improvement of numerical computations in the aforementioned fields. This comes at a cost, as DG methods require far more degrees of freedom and memory consumption than continuous discretizations on the same mesh. To improve this issue, we investigate hybrid discontinuous Galerkin methods allowing for a significant reduction of global degrees of freedom via static condensation.Our interdisciplinary group represents three research fields: Applied Mechanics, Numerical Analysis and Scientific Computing. Beyond the interdisciplinary research work within the team, we identified joint scientific goals with three different teams within the priority programme. Our aim is to explore the potential and the limitations of hybrid discontinuous Galerkin approximations in solid mechanics and to identify, develop and analyze related methods, which allow for an improvement of the performance in terms of convergence, robustness and stability without increasing the numerical effort.A first benchmarking of the hybrid methods showed promising results, which call for more investigations in the fruitful scientific environment of the priority programme. New symmetric hybrid DG methods shall be developed for the simulation of generalized material models in damage and plasticity as well as multi-scale problems. The DG concept opens up entirely new possibilities for adaptivity which shall be exploited based on proper error estimates. Within the field of interfaces, new promising discretization schemes for contact, delamination and non-matching meshes, being derived from the hybrid DG concept, will be developed and investigated. Existing knowledge about continuous methods will be exploited, whenever this is advantageous, to compare and transfer related technologies from continuous finite element and isogeometric methods to DG approximations and vice versa. For example, in contrast to DG methods, which allow for maximal discontinuity between the elements, isogeometric methods are based on maximal smoothness between the elements. Efficiency of isogeometric methods will be improved in a hybrid patch-wise approach. Within the patches maximal smoothness is used, while in between a discontinuous approach provides mesh flexibility.
现代有限元方法目前在新材料、创新产品和生产工艺的建造、设计和开发中发挥着重要作用。尽管过去的研究取得了成功,但仍然存在许多悬而未决的问题,例如,人工硬化效应、数值不稳定性和不希望的网格畸变敏感性。在这个项目中,特别关注几何和材料非线性,几乎不可压缩,各向异性和广义材料以及接触和界面模型,因为这些领域具有重要的理论和实践意义。不连续Galerkin(DG)方法可以被看作是连续方法的推广,从而为上述领域的数值计算的改进提供了额外的功能和选项。这是有代价的,因为DG方法需要更多的自由度和内存消耗,而不是在同一个网格上连续离散化。为了改善这个问题,我们研究混合间断Galerkin方法,允许通过静态凝聚显着减少整体自由度。我们的跨学科小组代表三个研究领域:应用力学,数值分析和科学计算。 除了团队内的跨学科研究工作外,我们还与优先计划内的三个不同团队确定了联合科学目标。我们的目标是探索混合间断Galerkin近似在固体力学中的潜力和局限性,并识别、发展和分析相关方法,这些方法允许在不增加数值工作量的情况下在收敛性、鲁棒性和稳定性方面的性能改进。混合方法的第一个基准测试显示了有希望的结果,这就要求在优先方案富有成果的科学环境中进行更多的调查。新的对称混合DG方法将被开发用于模拟损伤和塑性以及多尺度问题中的广义材料模型。DG的概念开辟了全新的可能性,应利用适当的误差估计为基础的自适应性。在该领域的接口,新的有前途的离散计划接触,分层和非匹配网格,来自混合DG的概念,将开发和研究。将利用现有的知识,连续的方法,只要这是有利的,比较和转让相关技术从连续有限元和等几何方法DG近似,反之亦然。例如,与允许元素之间的最大不连续性的DG方法相比,等几何方法基于元素之间的最大平滑度。在混合分块方法中,等几何方法的效率将得到提高。在面片内部使用最大平滑度,而在面片之间使用不连续方法提供网格灵活性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr.-Ing. Stefanie Reese其他文献

Professorin Dr.-Ing. Stefanie Reese的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr.-Ing. Stefanie Reese', 18)}}的其他基金

Model order reduction in space and parameter dimension - towards damage-based modeling of polymorphic uncertainty in the context of robustness and reliability
空间和参数维度的模型降阶 - 在鲁棒性和可靠性的背景下实现基于损伤的多态不确定性建模
  • 批准号:
    312911604
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Model reduction and substructure technique - application to modular shell structures made of ultra high performance concrete
模型简化和子结构技术——在超高性能混凝土模块化壳结构中的应用
  • 批准号:
    257611820
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Multiscale modelling of joining processes under consideration of the thermo-mechano-chemical behaviour in the interface
考虑界面热机械化学行为的连接过程的多尺度建模
  • 批准号:
    264271912
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Multiscale modelling of joining processes taking account of the thermomechanical-chemical behavior in the boundary layer
考虑边界层热机械化学行为的连接过程的多尺度建模
  • 批准号:
    227716235
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Finite element-based micromechanical modelling of phase interactions in filler reinforced elastomers
基于有限元的填料增强弹性体中相相互作用的微机械建模
  • 批准号:
    196288536
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Entwicklung neuer Technologien zur numerischen Simulation quasistatisch-dynamisch kombinierter Umformverfahren
准静态-动态组合成形过程数值模拟新技术开发
  • 批准号:
    81609791
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modellierung und Simulation des Werkstoff- und Strukturverhaltens bei der elektromagnetischen Blechumformung
电磁钣金成形中材料和结构行为的建模和仿真
  • 批准号:
    5437268
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Units
Experimentelle und theoretische Untersuchungen zur Kriechfestigkeit von einkristallinen Superlegierungen bei Temperaturen oberhalb von 1000°C
1000℃以上单晶高温合金蠕变强度的实验与理论研究
  • 批准号:
    5387085
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Direct data-driven computational mechanics for anelastic material behaviours
用于迟弹性材料行为的直接数据驱动计算力学
  • 批准号:
    431386925
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A unified continuum mechanical model framework for initial and induced anisotropy - systematic investigations of anisotropic damage
用于初始各向异性和诱导各向异性的统一连续力学模型框架 - 各向异性损伤的系统研究
  • 批准号:
    453715964
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
This PhD project is about the development of structure preserving (e.g. mass and total energy) finite element discretizations of flow models in Geophy
该博士项目是关于地球物理学中流动模型的结构保持(例如质量和总能量)有限元离散化的发展
  • 批准号:
    2753929
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    RGPIN-2015-05606
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2111387
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    RGPIN-2015-05606
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Tailored Entropy Stable Discretizations of Nonlinear Conservation Laws
职业:非线性守恒定律的定制熵稳定离散化
  • 批准号:
    1943186
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了