VISCOSITY PATHS: Assessing the Effect of Realistic Cooling Rates on the Evolution of Lava Flow Rheology

粘度路径:评估实际冷却速率对熔岩流流变学演变的影响

基本信息

  • 批准号:
    2309100
  • 负责人:
  • 金额:
    $ 38.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Lava flows are by far the most common form of volcanic activity. With more than 1 billion people worldwide living near an active volcano, it is imperative to accurately forecast lava flow hazard. While lava flows rarely kill people, they routinely destroy houses and infrastructure, sometimes causing millions of dollars of damage in a single event. In order to mitigate this hazard, this project seeks to understand how lava flows advance. The advance of lava flows largely depends on how they transition from being mainly liquid at eruption to fully solid as they flow away from the vent and cool down. This project will reproduce realistic lava flow cooling paths through laboratory experiments, and measure how lava ability to deform and move changes throughout the process. Further, the team will develop a learning unit on lava flow motion specifically tailored to the unique needs of the ever-growing homeschooling community, thus advancing NSF’s goal of promoting access to STEM learning and training for all citizens. Each quantum of lava within a flow is subject to a unique cooling history, which results in varying crystal assemblages and textures, and ultimately rheology, for any given lava flow in both space and time. State-of-the-art rheological experiments assume either isothermal conditions or constant cooling rates. However, natural lava flows experience much more nuanced cooling histories. The overarching goal of this proposal is to experimentally determine how the crystallization and thus rheology of basaltic lava evolve when subjected to realistic cooling curves. The product will be a detailed, physics-based rheological evolution map of a channelized basaltic lava flow. Because of the key role played by rheology in controlling lava flow advance speed and dynamics, this deliverable will provide the community with a key tool to improve our ability to forecast lava flow emplacement, and to potentially mitigate damage to infrastructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
熔岩流是火山活动最常见的形式。全世界有超过10亿人生活在活火山附近,因此必须准确预测熔岩流的危害。虽然熔岩流很少造成人员死亡,但它们经常摧毁房屋和基础设施,有时在一次事件中造成数百万美元的损失。为了减轻这种危害,该项目试图了解熔岩流如何前进。熔岩流的前进很大程度上取决于它们如何从喷发时的主要液体转变为完全固体,因为它们从喷口流出并冷却下来。该项目将通过实验室实验再现真实的熔岩流冷却路径,并测量熔岩在整个过程中变形和移动能力的变化。此外,该团队将开发一个专门针对不断增长的家庭教育社区的独特需求的熔岩流运动学习单元,从而推进NSF促进所有公民获得STEM学习和培训的目标。熔岩流中的每一个熔岩量子都经历了独特的冷却历史,这导致了不同的晶体组合和纹理,最终导致了任何给定熔岩流在空间和时间上的流变性。最先进的流变学实验假设等温条件或恒定的冷却速率。然而,自然熔岩流经历了更微妙的冷却历史。这项建议的首要目标是实验确定如何结晶,从而流变学的玄武熔岩演变时,受到现实的冷却曲线。该产品将是一个详细的,基于物理学的通道化玄武岩熔岩流流变演化图。由于流变学在控制熔岩流前进速度和动力学方面发挥的关键作用,该交付成果将为社区提供一个关键工具,以提高我们预测熔岩流就位的能力,并潜在地减轻对基础设施的破坏。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arianna Soldati其他文献

Crystal mush interaction controls eruptive style during the 2018 Kīlauea fissure eruption
  • DOI:
    10.1016/j.jvolgeores.2024.108178
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Arianna Soldati;Daniel Weidendorfer;Corrado Cimarelli;Ulrich Kueppers;Bruce F. Houghton;Caroline M. Tisdale;Donald B. Dingwell
  • 通讯作者:
    Donald B. Dingwell
Melt viscosity tracks the volcanic and magmatic evolution of the 2021 Tajogaite eruption, La Palma (Canary Islands)
  • DOI:
    10.1016/j.jvolgeores.2024.108210
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Arianna Soldati;Corrado Cimarelli;Ulrich Kueppers;Francisco Cáceres;Dirk Müller;Matthew Pankhurst;Jane H. Scarrow;Nemesio Perez;Donald B. Dingwell
  • 通讯作者:
    Donald B. Dingwell
A lower bound on the rheological evolution of magma in the 2021 Fagradalsfjall Fires
2021 年 Fagradalsfjall 火灾中岩浆流变演化的下限
  • DOI:
    10.1016/j.jvolgeores.2024.108098
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Arianna Soldati;Donald Bruce Dingwell;Thorvaldur Thordarson;Á. Höskuldsson;Ingibjörg Jónsdóttir;W. Moreland;J.S. Palmadottir;C. Gallagher;H. Torfadóttir;Jacqueline Grech Licari;Iðunn Kara Valdimarsdóttir;L. B. Pétursdóttir;R. Askew
  • 通讯作者:
    R. Askew
Volcanic Landforms
火山地貌

Arianna Soldati的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arianna Soldati', 18)}}的其他基金

Collaborative Research: BENEATH THE FOUNTAINS: Shallow conduit processes and diversity in basaltic fissure eruptions.
合作研究:喷泉下方:浅层管道过程和玄武岩裂隙喷发的多样性。
  • 批准号:
    2119973
  • 财政年份:
    2021
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Standard Grant

相似海外基金

Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
  • 批准号:
    2404809
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Standard Grant
Paths to primacy: How rising powers win domination in Asia, 1500-present
通往霸主之路:崛起中的大国如何赢得亚洲统治地位(1500 年以来)
  • 批准号:
    FT230100547
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    ARC Future Fellowships
Carbon Pricing Policy: Paths to Carbon Neutrality
碳定价政策:碳中和之路
  • 批准号:
    24K16360
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Continuing Grant
PaTHS - Pastoral Tracks Heading South: The evolution of the droveways (tratturi) in Central-Southern Italy
PaTHS - 向南的田园小径:意大利中南部车道 (tratturi) 的演变
  • 批准号:
    EP/Y02947X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Fellowship
The University of Essex and Pursuing Independent Paths Ltd KTP 23_24 R3
埃塞克斯大学和追求独立路径有限公司 KTP 23_24 R3
  • 批准号:
    10084131
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Knowledge Transfer Network
ARCHCROP: Crossing Paths: Millet, Wheat and Cultural Exchanges in the Inner Asian Mountain Corridor, China
ARCHCROP:交叉路径:中国内亚山地走廊的小米、小麦和文化交流
  • 批准号:
    EP/Y027809/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Fellowship
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Continuing Grant
AI-Powered Learning: Increasing User Retention and Productivity Through Personalised Learning Paths
人工智能驱动的学习:通过个性化学习路径提高用户保留率和生产力
  • 批准号:
    10079009
  • 财政年份:
    2023
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Collaborative R&D
Defining Reaction Paths for Chalcogenide Materials Discovery
定义硫族化物材料发现的反应路径
  • 批准号:
    2305731
  • 财政年份:
    2023
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了