Structure-preserving machine learning moment closures for kinetic equations

动力学方程的结构保持机器学习矩闭包

基本信息

  • 批准号:
    2309655
  • 负责人:
  • 金额:
    $ 24.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Kinetic theory describes the behaviors of dynamic systems from a statistical point of view. It has wide applications in many fields, including supersonic flows, microelectromechanical systems, unconventional gas reservoirs, space vehicle re-entry problems, and nuclear fusion. Because of the high dimensionality of such models, efficient simulation is a long-standing challenge, which limits their applications to real-world problems. This research project will address this challenge by developing reduced models to approximate the kinetic equations. These models, called moment models, are expected to capture the physics and serve as good surrogates with the aid of machine learning (ML). This will provide a powerful tool in the modeling and simulation of non-equilibrium phenomena in physics and engineering. The project will provide research opportunities for graduate and undergraduate students who are interested in computational mathematics, and provide curriculum development in the PI's department.The primary objective of this research is to develop robust, accurate, and efficient ML moment models with some provable mathematical structures. The project focuses on how to preserve the hyperbolicity structure of the ML moment models. The hyperbolicity is closely related to the well-posedness of the first-order system of partial differential equations and is also vitally important for robust numerical simulations. The following ideas and methodologies will be investigated: (1) a symmetrizer-based approach and an eigenvalue-based approach that preserve the hyperbolicity of the model in multidimensional cases by exploiting the algebraic structure of the ML moment model; (2) a ML approach to learning boundary conditions that ensures necessary conditions for the well-posedness of the initial boundary value problem for the moment model; (3) a ML model with hyperbolicity enforced by generalized data-driven moments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力学理论从统计学的角度描述了动力系统的行为。它在超音速流动、微机电系统、非常规气藏、航天器再入问题、核聚变等领域有着广泛的应用。由于这类模型的高维性,有效的仿真是一个长期存在的挑战,这限制了它们在现实世界问题中的应用。这项研究项目将通过开发简化模型来近似动力学方程来解决这一挑战。这些模型被称为矩模型,有望在机器学习(ML)的帮助下捕捉物理学并作为很好的替代品。这将为物理和工程中的非平衡现象的建模和仿真提供有力的工具。该项目将为对计算数学感兴趣的研究生和本科生提供研究机会,并为PI系提供课程开发。本研究的主要目标是开发具有可证明的数学结构的稳健、准确和高效的最大似然矩模型。该项目的重点是如何保持ML矩模型的双曲性结构。双曲性与一阶偏微分方程组的适定性密切相关,对于稳健的数值模拟也是至关重要的。将研究以下思想和方法:(1)基于对称化的方法和基于特征值的方法,通过利用ML矩模型的代数结构在多维情况下保持模型的双曲性;(2)学习边界条件的ML方法,其确保矩模型的初始边值问题的适定性的必要条件;(3)由广义数据驱动矩强制的具有双曲性的ML模型。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juntao Huang其他文献

Coupling conditions for linear hyperbolic relaxation systems in two-scales problems
二尺度问题中线性双曲松弛系统的耦合条件
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Juntao Huang;Ruo Li;Y. Zhou
  • 通讯作者:
    Y. Zhou
Analyzing the potential benefits of trio-amine systems for enhancing the COsub2/sub desorption processes
  • DOI:
    10.1016/j.fuel.2022.123216
  • 发表时间:
    2022-05-15
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Xiayi Hu;Juntao Huang;Xinwei He;Qi Luo;Chao'en Li;Changbo Zhou;Rui Zhang
  • 通讯作者:
    Rui Zhang
Tympanic membrane regeneration using platelet-rich fibrin: a systematic review and meta-analysis
  • DOI:
    10.1007/s00405-021-06915-1
  • 发表时间:
    2021-06-04
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Juntao Huang;Bing Mei Teh;Chongchang Zhou;Yunbin Shi;Yi Shen
  • 通讯作者:
    Yi Shen
Superconvergence and accuracy enhancement of discontinuous Galerkin solutions for Vlasov–Maxwell equations
Vlasov-Maxwell 方程间断伽辽金解的超收敛性和精度增强
  • DOI:
    10.1007/s10543-023-00993-9
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Andr'es Galindo;Juntao Huang;J. Ryan;Yingda Cheng
  • 通讯作者:
    Yingda Cheng
Semi‐coupled air/water immersed boundary approach for curvilinear dynamic overset grids with application to ship hydrodynamics
曲线动态重叠网格的半耦合空气/水浸边界方法及其在船舶流体动力学中的应用

Juntao Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向MANET的密钥管理关键技术研究
  • 批准号:
    61173188
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 24.94万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 24.94万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 24.94万
  • 项目类别:
    Standard Grant
Privacy-preserving machine learning through secure management of data's lifecycle in distributed systems: REMINDER
通过安全管理分布式系统中的数据生命周期来保护隐私的机器学习:提醒
  • 批准号:
    EP/Y036301/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.94万
  • 项目类别:
    Research Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247893
  • 财政年份:
    2023
  • 资助金额:
    $ 24.94万
  • 项目类别:
    Continuing Grant
CDS&E: Robust Symmetry-Preserving Machine Learning: Theory and Application
CDS
  • 批准号:
    2244976
  • 财政年份:
    2023
  • 资助金额:
    $ 24.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247891
  • 财政年份:
    2023
  • 资助金额:
    $ 24.94万
  • 项目类别:
    Continuing Grant
Efficient Secure Multi-Party Computation Framework for Privacy-Preserving Machine Learning
用于保护隐私的机器学习的高效安全多方计算框架
  • 批准号:
    22KF0098
  • 财政年份:
    2023
  • 资助金额:
    $ 24.94万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Robust privacy preserving distributed analysis platform for cancer research: addressing data bias and disparities
用于癌症研究的强大隐私保护分布式分析平台:解决数据偏差和差异
  • 批准号:
    10642562
  • 财政年份:
    2023
  • 资助金额:
    $ 24.94万
  • 项目类别:
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247892
  • 财政年份:
    2023
  • 资助金额:
    $ 24.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了