CCRI: Medium: Collaborative Research: 3DML: A Platform for Data, Design and Deployed Validation of Machine Learning for Wireless Networks and Mobile Applications

CCRI:媒介:协作研究:3DML:无线网络和移动应用机器学习的数据、设计和部署验证平台

基本信息

  • 批准号:
    2016727
  • 负责人:
  • 金额:
    $ 150万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The ever-increasing complexity of wireless networks and their emerging novel user applications (such as autonomous cars, virtual reality, and e-health) have spurred a significant demand to develop machine learning (ML) empowered, intelligent network management and optimization. However, there are still two main barriers to unleashing such innovations: (i) ML-based approaches require many large labeled datasets, which are difficult to acquire in the wireless context due to both privacy and cost challenges; and (ii) the challenge of deploying complex ML models into resource-constrained wireless devices. This project’s overarching goal is to design, develop, and disseminate a community platform called 3DML, for facilitating the development of ML-based innovations for next-generation wireless networks and mobile applications. 3DML will be the first platform, designed from the ground up, to meet the urgent need of exploring ML-based innovations for wireless applications, featuring three integrated key components. First, this project will develop 3DML-Data which has the ability to operate in networks with different scales and capture diverse network operating states and enable the collection of unprecedentedly diverse labeled datasets. Second, this project will design 3DML-Client, which consists of automated tools and compression libraries to (i) automatically generate efficient ML models and deployment strategies for achieving optimal trade-offs between task performance and resource consumption given diverse devices and applications, and (ii) provide a comprehensive pool of efficient ML modules and functions for fast development. Third, this project will develop 3DML-Infrastructure, which can make use of 3DML-Client with data collected from 3DML-Data, to generate efficient ML algorithms deployed into wireless infrastructure, and include a methodology for researchers to use ML algorithms to customize key modules for massive MIMO channel estimation, detection, decoding, beamforming, and spectrum sharing. This project addresses a pressing need of the wireless research community to develop a platform for ML-empowered intelligent network management. The success of this project will provide data and tools to enable automated and self-customized exploration and deployment of ML-based approaches for wireless applications. The educational program with workshops, online courses, and internships will involve not only undergraduate and graduate students from various institutes, but also practitioners from industry. Overall, 3DML will open up a host of new possibilities for developing innovations towards next generation intelligent wireless networks, including enhanced mobile broadband, massive Internet-of-things and ultra-low-latency applications in order to support numerous emerging applications. All of the developed datasets, tools, and libraries will be released at https://3dml.rice.eduThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无线网络及其新兴新颖的用户应用程序的复杂性(例如自动驾驶汽车,虚拟现实和电子卫生)已经刺激了开发机器学习(ML)的巨大需求,赋予了机器学习(ML),智能网络管理和优化。但是,仍然有两个释放此类创新的主要障碍:(i)基于ML的方法需要许多大型标记的数据集,由于隐私和成本挑战,它们在无线环境中很难获得; (ii)将复杂的ML模型部署到资源约束的无线设备中的挑战。该项目的总体目标是设计,开发和传播一个名为3DML的社区平台,以支持为下一代无线网络和移动应用程序开发基于ML的创新。 3DML将是第一个从头开始设计的平台,以满足探索基于ML的无线应用创新的迫切需求,该创新具有三个集成的关键组件。首先,该项目将开发3DML-DATA,该项目能够在具有不同尺度的网络中运行并捕获潜水员网络操作状态,并能够收集前所未有的标签数据集。其次,该项目将设计3DML-CLIENT,由自动化工具和压缩库组成(i)自动生成有效的ML模型和部署策略,以实现给定的Divers Exgection和应用程序之间的任务性能和资源消耗之间的最佳权衡,并且(II)为快速开发提供了全面的高效ML模块和功能库。 Third, this project will develop 3DML-Infrastructure, which can make use of 3DML-Client with data collected from 3DML-Data, to generate efficient ML algorithms deployed into wireless infrastructure, and include a methodology for researchers to use ML algorithms to customize key modules for massive MIMO channel estimation, detection, decoding, beamforming, and spectrum sharing.该项目地址迫切需要无线研究社区为ML授权的智能网络管理开发平台。该项目的成功将提供数据和工具,以实现自动化和自定义的探索和对无线应用程序的基于ML的方法的部署。通过研讨会,在线课程和实习的教育计划不仅涉及来自各种研究所的本科生和研究生,而且还涉及来自行业的从业者。总体而言,3DML将为下一代智能无线网络开发创新的新可能性,包括增强的移动宽带,大规模的互联网和超低延迟应用程序,以支持众多新兴应用程序。所有已开发的数据集,工具和库将在https://3dml.rice.eduthis奖上发布,反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响评估标准来通过评估来诚实地获得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enabling Resilience in Virtualized RANs with Atlas
O-HAS: Optical Hardware Accelerator Search for Boosting Both Acceleration Performance and Development Speed
A Deep Reinforcement Learning-Based Resource Scheduler for Massive MIMO Networks
Virtual DPD Neural Network Predistortion for OFDM-based MU-Massive MIMO
基于 OFDM 的 MU-Massive MIMO 的虚拟 DPD 神经网络预失真
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tarver, C.;Balatsoukas-Stimming, A.;Studer, C.;Cavallaro, J. R.
  • 通讯作者:
    Cavallaro, J. R.
Toward reconfigurable kernel datapaths with learned optimizations
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingyan Lin其他文献

A Rank Decomposed Statistical Error Compensation Technique for Robust Convolutional Neural Networks in the Near Threshold Voltage Regime
近阈值电压范围内鲁棒卷积神经网络的秩分解统计误差补偿技术
  • DOI:
    10.1007/s11265-018-1332-4
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingyan Lin;Sai Zhang;Naresh R Shanbhag
  • 通讯作者:
    Naresh R Shanbhag
Variation-Tolerant Architectures for Convolutional Neural Networks in the Near Threshold Voltage Regime
近阈值电压范围内卷积神经网络的抗变化架构
NeRFool: Uncovering the Vulnerability of Generalizable Neural Radiance Fields against Adversarial Perturbations
NeRFool:揭示可推广神经辐射场对抗对抗性扰动的脆弱性
Instant-NeRF: Instant On-Device Neural Radiance Field Training via Algorithm-Accelerator Co-Designed Near-Memory Processing
Instant-NeRF:通过算法加速器共同设计的近内存处理进行即时设备上神经辐射现场训练
  • DOI:
    10.1109/dac56929.2023.10247710
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Zhao;Shang Wu;Jingqun Zhang;Sixu Li;Chaojian Li;Yingyan Lin
  • 通讯作者:
    Yingyan Lin
NetBooster: Empowering Tiny Deep Learning By Standing on the Shoulders of Deep Giants
NetBooster:站在深度巨人的肩膀上,为微小的深度学习赋能
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhongzhi Yu;Y. Fu;Jiayi Yuan;Haoran You;Yingyan Lin
  • 通讯作者:
    Yingyan Lin

Yingyan Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingyan Lin', 18)}}的其他基金

RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    2400511
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CAREER: Differentiable Network-Accelerator Co-Search Towards Ubiquitous On-Device Intelligence and Green AI
职业生涯:可微分网络加速器联合搜索,实现无处不在的设备智能和绿色人工智能
  • 批准号:
    2345577
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
SHF: Medium: Cross-Stack Algorithm-Hardware-Systems Optimization Towards Ubiquitous On-Device 3D Intelligence
SHF:中:跨堆栈算法-硬件-系统优化,实现无处不在的设备上 3D 智能
  • 批准号:
    2312758
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
  • 批准号:
    2346091
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
SHF: Medium:DILSE: Codesigning Decentralized Incremental Learning System via Streaming Data Summarization on Edge
SHF:Medium:DILSE:通过边缘流数据汇总共同设计去中心化增量学习系统
  • 批准号:
    2211815
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
CAREER: Differentiable Network-Accelerator Co-Search Towards Ubiquitous On-Device Intelligence and Green AI
职业生涯:可微分网络加速器联合搜索,实现无处不在的设备智能和绿色人工智能
  • 批准号:
    2048183
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
NSF Workshop: Machine Learning Hardware Breakthroughs Towards Green AI and Ubiquitous On-Device Intelligence. To be Held in November 2020.
NSF 研讨会:机器学习硬件突破绿色人工智能和无处不在的设备智能。
  • 批准号:
    2054865
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    1937592
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
  • 批准号:
    1934767
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CCRI: New: Medium: A Development and Experimental Environment for Privacy-preserving and Secure (DEEPSECURE) Machine Learning
合作研究:CCRI:新:媒介:隐私保护和安全(DEEPSECURE)机器学习的开发和实验环境
  • 批准号:
    2245250
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CCRI: Medium: Collaborative Research: Hardware-in-the-Loop and Remotely-Accessible/Configurable/Programmable Internet of Things (IoT) Testbeds
CCRI:媒介:协作研究:硬件在环和远程访问/可配置/可编程物联网 (IoT) 测试平台
  • 批准号:
    2309477
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CCRI: Medium: Collaborative Research: Hardware-in-the-Loop and Remotely-Accessible/Configurable/Programmable Internet of Things (IoT) Testbeds
CCRI:媒介:协作研究:硬件在环和远程访问/可配置/可编程物联网 (IoT) 测试平台
  • 批准号:
    2204785
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Medium: A Development and Experimental Environment for Privacy-preserving and Secure (DEEPSECURE) Machine Learning
合作研究:CCRI:新:媒介:隐私保护和安全(DEEPSECURE)机器学习的开发和实验环境
  • 批准号:
    2120279
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Medium: A Development and Experimental Environment for Privacy-preserving and Secure (DEEPSECURE) Machine Learning
合作研究:CCRI:新:媒介:隐私保护和安全(DEEPSECURE)机器学习的开发和实验环境
  • 批准号:
    2120369
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了