Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design

协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机

基本信息

  • 批准号:
    1934767
  • 负责人:
  • 金额:
    $ 27.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

There has been a tremendous demand for bringing Deep Neural Network (DNN) powered functionality into Internet of Thing (IoT) devices to enable ubiquitous intelligent "IoT cameras". However, state-of-the-art DNNs have a prohibitive energy cost, making them impractical to be deployed in resource-constrained IoT platforms. This project will develop a novel energy-efficient DNN framework, via a systematic integration of platform, hardware, and algorithm co-design innovations. Despite a growing interest in energy-efficient DNNs, existing techniques lack a systematic optimization across the full stack of design abstraction, from systems through algorithms to hardware implementation. The proposed research advocates an innovative, holistic effort towards energy-efficient and adaptive DNN-powered "IoT cameras" by jointly optimizing the platform-, hardware-, and algorithm-level co-design efforts. On the system level, we will address how to automatically generate and adapt DNN models and implementation, to meet a variety of "IoT devices" application-specific performance needs and device-specific resource constraints. On the hardware level, we will leverage the observed high sparsity in DNN activations for energy-efficient hardware implementations of both DNN training and inference by using low-cost zero predictors and hence bypass unnecessary computations. On the algorithm level, we will develop innovative factorized sparsity regularization in DNN training as well as efficient, controllable adaptive inference mechanisms, fully complementing and closely integrating with our hardware innovations. The proposed research will advance the scientific domain of each level, from system and algorithm, to hardware and a holistic, systematic cross-level methodology for designing energy-efficient intelligent systems. Progress on this project will enable ubiquitous DNN-powered intelligent functions in a significantly increased number of resource-constrained daily-life devices, across numerous camera-based Internet-of-Things (IoT) applications such as traffic monitoring, self-driving and smart cars, personal digital assistants, surveillance and security, and augmented reality. As camera-based IoT devices penetrate all walks of life, by enabling DNN-powered intelligence to be pervasive in these devices, the proposed research can have a tremendous impact on global societies and economies. The research will be integrated with education on energy efficient deep learning. Educational activities include curriculum development, undergraduate research, and outreach to K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于将深度神经网络(DNN)驱动的功能引入物联网(IoT)设备以实现无处不在的智能“IoT相机”存在巨大的需求。然而,最先进的DNN具有令人望而却步的能源成本,使得它们在资源受限的物联网平台中部署不切实际。该项目将通过平台、硬件和算法协同设计创新的系统集成,开发一种新型的节能DNN框架。尽管对节能DNN的兴趣越来越大,但现有技术缺乏对整个设计抽象堆栈的系统优化,从系统到算法再到硬件实现。拟议的研究倡导通过联合优化平台、硬件和算法级的协同设计工作,实现节能和自适应DNN驱动的“物联网相机”的创新、整体努力。在系统层面,我们将解决如何自动生成和调整DNN模型和实现,以满足各种“物联网设备”特定于应用的性能需求和特定于设备的资源约束。在硬件层面上,我们将利用DNN激活中观察到的高稀疏性,通过使用低成本零预测器来实现DNN训练和推理的节能硬件实现,从而绕过不必要的计算。在算法层面,我们将在DNN训练中开发创新的因子化稀疏正则化,以及高效、可控的自适应推理机制,与我们的硬件创新充分互补并紧密结合。 拟议的研究将推进每个层次的科学领域,从系统和算法,到硬件和一个整体的,系统的跨层次的方法来设计节能的智能系统。该项目的进展将在大量资源受限的日常生活设备中实现无处不在的DNN智能功能,包括众多基于摄像头的物联网(IoT)应用,如交通监控,自动驾驶和智能汽车,个人数字助理,监控和安全以及增强现实。随着基于摄像头的物联网设备渗透到各行各业,通过使DNN驱动的智能在这些设备中无处不在,拟议的研究可以对全球社会和经济产生巨大影响。 该研究将与节能深度学习教育相结合。 教育活动包括课程开发,本科生研究和K-12学生的推广。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Contrastive quant: quantization makes stronger contrastive learning
InstantNet: Automated Generation and Deployment of Instantaneously Switchable-Precision Networks
InstantNet:自动生成和部署即时可切换精度网络
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fu, Yonggan;Yu, Zhongzhi;Zhang, Yongan;Jiang, Yifan;Li, Chaojian;Liang, Yongyuan;Jiang, Mingchao;Wang, Zhangyang;Lin, Yingyan
  • 通讯作者:
    Lin, Yingyan
Early-Bird GCNs: Graph-Network Co-optimization towards More Efficient GCN Training and Inference via Drawing Early-Bird Lottery Tickets
  • DOI:
    10.1609/aaai.v36i8.20873
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haoran You;Zhihan Lu;Zijian Zhou;Y. Fu;Yingyan Lin
  • 通讯作者:
    Haoran You;Zhihan Lu;Zijian Zhou;Y. Fu;Yingyan Lin
2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency
SACoD: Sensor Algorithm Co-Design Towards Efficient CNN-powered Intelligent PhlatCam
  • DOI:
    10.1109/iccv48922.2021.00512
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yonggan Fu;Yang Zhang;Yue Wang;Zhihan Lv;Vivek Boominathan;A. Veeraraghavan;Yingyan Lin
  • 通讯作者:
    Yonggan Fu;Yang Zhang;Yue Wang;Zhihan Lv;Vivek Boominathan;A. Veeraraghavan;Yingyan Lin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingyan Lin其他文献

NeRFool: Uncovering the Vulnerability of Generalizable Neural Radiance Fields against Adversarial Perturbations
NeRFool:揭示可推广神经辐射场对抗对抗性扰动的脆弱性
Instant-NeRF: Instant On-Device Neural Radiance Field Training via Algorithm-Accelerator Co-Designed Near-Memory Processing
Instant-NeRF:通过算法加速器共同设计的近内存处理进行即时设备上神经辐射现场训练
  • DOI:
    10.1109/dac56929.2023.10247710
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Zhao;Shang Wu;Jingqun Zhang;Sixu Li;Chaojian Li;Yingyan Lin
  • 通讯作者:
    Yingyan Lin
Performance Multiple Objective Optimization of Irreversible Direct Carbon Fuel Cell/Stirling Thermo-Mechanical Coupling System
不可逆直接碳燃料电池/斯特林热机耦合系统性能多目标优化
Performance Analysis of Direct Carbon Fuel Cell-Braysson Heat Engine Coupling System
直接碳燃料电池-布雷松热机耦合系统性能分析
NetBooster: Empowering Tiny Deep Learning By Standing on the Shoulders of Deep Giants
NetBooster:站在深度巨人的肩膀上,为微小的深度学习赋能
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhongzhi Yu;Y. Fu;Jiayi Yuan;Haoran You;Yingyan Lin
  • 通讯作者:
    Yingyan Lin

Yingyan Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingyan Lin', 18)}}的其他基金

RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    2400511
  • 财政年份:
    2023
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
CAREER: Differentiable Network-Accelerator Co-Search Towards Ubiquitous On-Device Intelligence and Green AI
职业生涯:可微分网络加速器联合搜索,实现无处不在的设备智能和绿色人工智能
  • 批准号:
    2345577
  • 财政年份:
    2023
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Continuing Grant
SHF: Medium: Cross-Stack Algorithm-Hardware-Systems Optimization Towards Ubiquitous On-Device 3D Intelligence
SHF:中:跨堆栈算法-硬件-系统优化,实现无处不在的设备上 3D 智能
  • 批准号:
    2312758
  • 财政年份:
    2023
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
  • 批准号:
    2346091
  • 财政年份:
    2023
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
SHF: Medium:DILSE: Codesigning Decentralized Incremental Learning System via Streaming Data Summarization on Edge
SHF:Medium:DILSE:通过边缘流数据汇总共同设计去中心化增量学习系统
  • 批准号:
    2211815
  • 财政年份:
    2022
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Continuing Grant
CAREER: Differentiable Network-Accelerator Co-Search Towards Ubiquitous On-Device Intelligence and Green AI
职业生涯:可微分网络加速器联合搜索,实现无处不在的设备智能和绿色人工智能
  • 批准号:
    2048183
  • 财政年份:
    2021
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Continuing Grant
NSF Workshop: Machine Learning Hardware Breakthroughs Towards Green AI and Ubiquitous On-Device Intelligence. To be Held in November 2020.
NSF 研讨会:机器学习硬件突破绿色人工智能和无处不在的设备智能。
  • 批准号:
    2054865
  • 财政年份:
    2020
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
CCRI: Medium: Collaborative Research: 3DML: A Platform for Data, Design and Deployed Validation of Machine Learning for Wireless Networks and Mobile Applications
CCRI:媒介:协作研究:3DML:无线网络和移动应用机器学习的数据、设计和部署验证平台
  • 批准号:
    2016727
  • 财政年份:
    2020
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    1937592
  • 财政年份:
    2019
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332468
  • 财政年份:
    2024
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Continuing Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
  • 批准号:
    2311950
  • 财政年份:
    2023
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
  • 批准号:
    2414176
  • 财政年份:
    2023
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了