CAREER: Differentiable Network-Accelerator Co-Search Towards Ubiquitous On-Device Intelligence and Green AI
职业生涯:可微分网络加速器联合搜索,实现无处不在的设备智能和绿色人工智能
基本信息
- 批准号:2048183
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There exists a vast and increasing gap between the prohibitive complexity of powerful Deep Learning (DL) algorithms and the constrained resources available for implementing them. It has been recently recognized that jointly designing the DL algorithms and their hardware accelerators is very promising in closing this vast gap. However, existing works have just begun to scratch the surface of its full potential. This project aims to foster a systematic breakthrough in developing DL accelerators and their achievable acceleration efficiency by jointly searching (co-search) for DL algorithms and their accelerators. The overarching goal of this project is to develop, implement, and experimentally validate a new paradigm of designing deep DL accelerators for enabling: (1) orders of magnitude faster development speed; (2) much improved hardware efficiency, and (3) unprecedented flexibility to control the trade-off between hardware efficiency and task performance, by holistically fostering a systematic breakthrough in automated network-accelerator co-search. The educational plan is to continue and expand an existing collaboration with Technology for All, an organization that targets low-income and underserved persons, by mentoring and advising high school students from underrepresented communities. The proposed research will advance knowledge and produce scientific principles and tools for a new paradigm of designing DL accelerators with orders-of-magnitude improvement in both development speed and hardware efficiency. First, a generic design space description and a performance predictor will be developed to serve as key enablers for both (1) automated accelerator search and (2) automated network-accelerator co-search, opening up many opportunities for innovating efficient DL accelerators. Second, based on the aforementioned design space description and performance predictor, an automated and Differentiable Hardware Accelerator Search (D-HAS) engine will be designed to enable both (1) efficient navigation over the large and discrete design space of DL accelerators and (2) the significantly faster development of DL accelerators. Third, building upon the above D-HAS, an innovative network-accelerator co-search framework will be established to enable simultaneous search for optimal DL network and accelerator pairs that together will maximize the achievable hardware efficiency. Finally, a unique resource (Rice University's ASTRO platform) will be leveraged to benchmark and demonstrate the innovations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
强大的深度学习(DL)算法的复杂性与可用于实现它们的有限资源之间存在巨大且不断增长的差距。最近已经认识到,联合设计DL算法及其硬件加速器在缩小这一巨大差距方面非常有前途。然而,现有的作品才刚刚开始触及其全部潜力的表面。该项目旨在通过联合搜索(共同搜索)DL算法及其加速器,在开发DL加速器及其可实现的加速效率方面取得系统性突破。该项目的总体目标是开发,实施和实验验证设计深度DL加速器的新范式,以实现:(1)数量级更快的开发速度;(2)大大提高硬件效率,以及(3)前所未有的灵活性,以控制硬件效率和任务性能之间的权衡,通过全面促进自动化网络加速器共同搜索的系统性突破。教育计划将继续并扩大与面向低收入和得不到充分服务的人的组织“人人享有技术”的现有合作,为来自代表性不足社区的高中生提供辅导和咨询。拟议的研究将推进知识,并产生科学的原则和工具,为设计DL加速器的新范式,在开发速度和硬件效率方面都有数量级的改进。首先,将开发通用设计空间描述和性能预测器,以作为(1)自动化加速器搜索和(2)自动化网络加速器共同搜索的关键推动因素,为创新高效DL加速器提供许多机会。其次,基于上述设计空间描述和性能预测器,将设计自动化和可区分的硬件加速器搜索(D-HAS)引擎,以实现(1)在DL加速器的大型离散设计空间上的有效导航和(2)DL加速器的显著更快的开发。第三,在上述D-HAS的基础上,将建立创新的网络加速器共同搜索框架,以使得能够同时搜索最佳DL网络和加速器对,其一起将最大化可实现的硬件效率。最后,一个独特的资源(莱斯大学的ASTRO平台)将被用来衡量和展示创新。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Contrastive quant: quantization makes stronger contrastive learning
- DOI:10.1145/3489517.3530419
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Y. Fu;Qixuan Yu;Meng Li;Xuefeng Ouyang;Vikas Chandra;Yingyan Lin
- 通讯作者:Y. Fu;Qixuan Yu;Meng Li;Xuefeng Ouyang;Vikas Chandra;Yingyan Lin
Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators
Auto-NBA:网络、比特宽度和加速器联合空间的高效搜索
- DOI:10.48550/arxiv.2106.06575
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Fu, Yonggan;Zhang, Yongan;Zhang, Yang;Cox, David;Lin, Yingyan
- 通讯作者:Lin, Yingyan
A3C-S: Automated Agent Accelerator Co-Search towards Efficient Deep Reinforcement Learning
A3C-S:自动化代理加速器协同搜索,实现高效深度强化学习
- DOI:10.1109/dac18074.2021.9586305
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Fu, Yonggan;Zhang, Yongan;Li, Chaojian;Yu, Zhongzhi;Lin, Yingyan
- 通讯作者:Lin, Yingyan
ViTALiTy: Unifying Low-rank and Sparse Approximation for Vision Transformer Acceleration with a Linear Taylor Attention
- DOI:10.1109/hpca56546.2023.10071081
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Jyotikrishna Dass;Shang Wu;Huihong Shi;Chaojian Li;Zhifan Ye;Zhongfeng Wang;Yingyan Lin
- 通讯作者:Jyotikrishna Dass;Shang Wu;Huihong Shi;Chaojian Li;Zhifan Ye;Zhongfeng Wang;Yingyan Lin
Patch-Fool: Are Vision Transformers Always Robust Against Adversarial Perturbations?
- DOI:10.48550/arxiv.2203.08392
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Y. Fu;Shunyao Zhang;Shan-Hung Wu;Cheng Wan;Yingyan Lin
- 通讯作者:Y. Fu;Shunyao Zhang;Shan-Hung Wu;Cheng Wan;Yingyan Lin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yingyan Lin其他文献
NeRFool: Uncovering the Vulnerability of Generalizable Neural Radiance Fields against Adversarial Perturbations
NeRFool:揭示可推广神经辐射场对抗对抗性扰动的脆弱性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Y. Fu;Ye Yuan;Souvik Kundu;Shang Wu;Shunyao Zhang;Yingyan Lin - 通讯作者:
Yingyan Lin
Instant-NeRF: Instant On-Device Neural Radiance Field Training via Algorithm-Accelerator Co-Designed Near-Memory Processing
Instant-NeRF:通过算法加速器共同设计的近内存处理进行即时设备上神经辐射现场训练
- DOI:
10.1109/dac56929.2023.10247710 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yang Zhao;Shang Wu;Jingqun Zhang;Sixu Li;Chaojian Li;Yingyan Lin - 通讯作者:
Yingyan Lin
Performance Multiple Objective Optimization of Irreversible Direct Carbon Fuel Cell/Stirling Thermo-Mechanical Coupling System
不可逆直接碳燃料电池/斯特林热机耦合系统性能多目标优化
- DOI:
10.20964/2020.01.04 - 发表时间:
2020 - 期刊:
- 影响因子:1.5
- 作者:
Liwei Chen;Yingyan Lin - 通讯作者:
Yingyan Lin
Performance Analysis of Direct Carbon Fuel Cell-Braysson Heat Engine Coupling System
直接碳燃料电池-布雷松热机耦合系统性能分析
- DOI:
10.20964/2020.06.32 - 发表时间:
2020-06 - 期刊:
- 影响因子:1.5
- 作者:
Liwei Chen;Lihua Gao;Yingyan Lin - 通讯作者:
Yingyan Lin
NetBooster: Empowering Tiny Deep Learning By Standing on the Shoulders of Deep Giants
NetBooster:站在深度巨人的肩膀上,为微小的深度学习赋能
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhongzhi Yu;Y. Fu;Jiayi Yuan;Haoran You;Yingyan Lin - 通讯作者:
Yingyan Lin
Yingyan Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yingyan Lin', 18)}}的其他基金
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2400511 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Differentiable Network-Accelerator Co-Search Towards Ubiquitous On-Device Intelligence and Green AI
职业生涯:可微分网络加速器联合搜索,实现无处不在的设备智能和绿色人工智能
- 批准号:
2345577 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
SHF: Medium: Cross-Stack Algorithm-Hardware-Systems Optimization Towards Ubiquitous On-Device 3D Intelligence
SHF:中:跨堆栈算法-硬件-系统优化,实现无处不在的设备上 3D 智能
- 批准号:
2312758 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
- 批准号:
2346091 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Medium:DILSE: Codesigning Decentralized Incremental Learning System via Streaming Data Summarization on Edge
SHF:Medium:DILSE:通过边缘流数据汇总共同设计去中心化增量学习系统
- 批准号:
2211815 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
NSF Workshop: Machine Learning Hardware Breakthroughs Towards Green AI and Ubiquitous On-Device Intelligence. To be Held in November 2020.
NSF 研讨会:机器学习硬件突破绿色人工智能和无处不在的设备智能。
- 批准号:
2054865 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CCRI: Medium: Collaborative Research: 3DML: A Platform for Data, Design and Deployed Validation of Machine Learning for Wireless Networks and Mobile Applications
CCRI:媒介:协作研究:3DML:无线网络和移动应用机器学习的数据、设计和部署验证平台
- 批准号:
2016727 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
1937592 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
- 批准号:
1934767 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Differentiable Programming for Visual Computing
职业:视觉计算的可微分编程
- 批准号:
2238839 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Differentiable Network-Accelerator Co-Search Towards Ubiquitous On-Device Intelligence and Green AI
职业生涯:可微分网络加速器联合搜索,实现无处不在的设备智能和绿色人工智能
- 批准号:
2345577 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Integration of experiments and biomolecular modeling through end-to-end differentiable approaches
通过端到端可微分方法整合实验和生物分子建模
- 批准号:
23H03412 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
On the reliability of computational algorithms in optimal control methods using highly expressive non-differentiable functions
使用高表达不可微函数的最优控制方法中计算算法的可靠性
- 批准号:
23K13359 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Physics-Based Differentiable and Inverse Rendering
职业:基于物理的可微分和逆向渲染
- 批准号:
2239627 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
PHYDL: Physics-informed Differentiable Learning for Robotic Manipulation of Viscous and Granular Media
PHYDL:用于粘性和颗粒介质机器人操作的物理信息微分学习
- 批准号:
EP/X018962/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant
ELEMENTS: CLAD ENABLING DIFFERENTIABLE PROGRAMMING IN SCIENCE
元素:CLAD 实现科学中的差异化编程
- 批准号:
2311471 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Non-differentiable Energy Minimisation For Modelling Fractured Porous Media
用于模拟破裂多孔介质的不可微能量最小化
- 批准号:
DP220104021 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects